Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 63-69    DOI: 10.13523/j.cb.2011036
    
Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design
WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke()
College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Download: HTML   PDF(35509KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:In order to obtain a lipase with high enzyme activity and high temperature resistance, the Thermomyces lanuginosus lipase was modified by rational design, which laid the foundation for the application of lipase in the feed industry, oil processing and biodiesel.Methods:A candidate site was found by phylogenetic analysis of the lid and loop regions of the typical domain of lipase. A lipase recombinant with significantly improved lipase activity and high temperature resistance was obtained through rational design and experimental verification, and a multi-copy vector was constructed to complete the evaluation of the enzyme production ability in a 50L fermentor.Results:The thermal stability of lipase was significantly improved after designing. The crude enzyme solution still retained 78.94% of the enzyme activity after being placed at 80℃ for 12h. After fermentation for 168h in a 50L fermentor, the enzyme activity of the supernatant reached 29 000U/mL.Conclusion:A novel high activity and high thermal stable lipase was successfully designed and obtained, which facilitates its large-scale production and industrial application.



Key wordsLipase      Rational design      High activity      Thermal stability     
Received: 19 November 2020      Published: 08 April 2021
ZTFLH:  Q814.9  
Corresponding Authors: Jiang-ke YANG     E-mail: jiangke.yang@gmail.com
Cite this article:

WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design. China Biotechnology, 2021, 41(2/3): 63-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011036     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/63

Fig.1 The results of protein comparison with HotSpot Wizard 3.0 of TLL
Fig.2 3D structure indicate the mutation site of lipase TLL (a) 3D structure indicate of Gly91 (c) 3D structure indicate of Leu227 (b),(d) Structure indicate of mutations
Fig.3 Construction of recombinants and expression of original and optimized TLL (a)Plasmid map of pPIC-tll’s recombinant (b)Results of pPIC-tll, pPIC-tll2a and pPIC-tll4a enzymatic digestion (c)The SDS-PAGE of recombinant expression (d) Analysis of TLL activity and protein content before and after mutation
Fig.4 The results of enzymatic properties of original and optimized lipase (a) Effects of pH on lipase activity (b)Effects of temperature on lipase activity (c) Effect of treatment at 80℃ for 0-60min on enzyme activity (d)Effect of treatment at 80℃ for 0-12h on enzyme activity
Fig.5 Optimal lipase induced expression in fermentation tank (a) SDS-PAGE results of fermentation in 50L fermentor (b) Analysis of enzyme activity and protein content in induction stage
[1]   Treichel H, Oliveira D, Mazutti M A, et al. A review on microbial lipases production. Food and Bioprocess Technology, 2010,3(2):182-196.
doi: 10.1007/s11947-009-0202-2
[2]   Hasan F, Shah A A, Hameed A. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 2006,39(2):235-251.
[3]   Jaeger K E, Eggert T. Lipases for biotechnology. Current Opinion in Biotechnology, 2002,13(4):390-397.
doi: 10.1016/s0958-1669(02)00341-5 pmid: 12323363
[4]   Kobayashi S. Recent developments in lipase‐catalyzed synthesis of polyesters. Macromolecular Rapid Communications, 2009,30(4‐5):237-266.
[5]   Andualema B, Gessesse A. Microbial lipases and their industrial applications: review. Biotechnology(Faisalabad), 2012,11(3):100-118.
[6]   蔡海莺, 张婷, Dumba Trish, 等. 疏绵状嗜热丝孢菌脂肪酶在毕赤酵母中的高效表达和性质鉴定. 中国食品学报, 2018,18(6):262-271.
[6]   Cai H Y, Zhang T, Trish D, et al. High-efficient expression and properties characterization of Thermomyces lanuginosus lipase in Pichia pastoris. Journal of Chinese Institute of Food Science and Technology, 2018,18(6):262-271.
[7]   代敏, 纪昌涛, 汪小锋, 等. 疏棉状嗜热丝孢菌脂肪酶在毕赤酵母中的表面展示及酶学性质. 微生物学报, 2012,52(7):857-865.
[7]   Dai M, Ji C T, Wang X F, et al. Cell surface display of Thermomyces lanuginosus lipase in Pichia pastoris and its characterization. Acta Microbiologica Sinica, 2012,52(7):857-865.
[8]   Sumbalova L, Stourac J, Martinek T, et al. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Research, 2018,46(W1):W356-W362.
pmid: 29796670
[9]   Pavelka A, Chovancova E, Damborsky J. HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Research, 2009,37(suppl_2):W376-W383.
[10]   Arima K, Liu W H, Beppu T. Studies on the lipase of thermophilic fungus Humicola lanuginosa. Agricultural and Biological Chemistry, 1972,36(5):893-895.
[11]   Wada K, Toya Y, Banno S, et al. 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli. Journal of Bioscience and Bioengineering, 2017,123(2):177-182.
doi: 10.1016/j.jbiosc.2016.08.001 pmid: 27570223
[12]   Secundo F, Carrea G, Tarabiono C, et al. The lid is a structural and functional determinant of lipase activity and selectivity. Journal of Molecular Catalysis B:Enzymatic, 2006,39(1-4):166-170.
[13]   Santarossa G, Lafranconi P G, Alquati C, et al. Mutations in the “lid” region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Letters, 2005,579(11):2383-2386.
doi: 10.1016/j.febslet.2005.03.037 pmid: 15848176
[14]   Zhang J H, Jiang Y Y, Lin Y, et al. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids. PLoS One, 2013,8(7):e67892.
doi: 10.1371/journal.pone.0067892 pmid: 23844120
[15]   邵化. 耐热脂肪酶/酯酶基因资源的挖掘与研究. 武汉. 华中科技大学, 2014.
[15]   Shao H. Study on the resources of thermostable lipases/esterases. Wuhan: Huazhong University of Science and Technology, 2014.
[16]   Scorer C A, Clare J J, Mccombie W R, et al. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/ Technology, 1994,12(2):181.
[17]   Rabert C, Weinacker D, Pessoa A, et al. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Brazilian Journal of Microbiology, 2013,44(2):351-356.
doi: 10.1590/S1517-83822013005000041 pmid: 24294221
[1] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[3] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[4] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[5] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[6] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[7] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[8] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[9] Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases[J]. China Biotechnology, 2018, 38(11): 51-58.
[10] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[11] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[12] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[13] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[14] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[15] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.