Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (11): 51-58    DOI: 10.13523/j.cb.20181107
    
Research Advances in Whole-cell Lipases
Hong-qiu SHI,Dai-ming ZHA(),Bing-huo ZHANG,Han-quan LI
School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
Download: HTML   PDF(546KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lipases being important industrial enzymes, which have been widely used in many industrial fields. Compared with free lipases and physical or chemical immobilized lipases, whole-cell lipases have the advantages of simple preparation, no protein extraction and purification, natural immobilization, better stability and resistance, low cost of preparation and equipment, etc. Therefore, the utilization of lipases in the form of whole-cell is known as one of the most promising ways to reduce the cost of biotransformation. The study on whole-cell lipases has always been a hot spot in the lipase field. The research advances in whole-cell lipases, including the wild-type whole-cell lipases and the gene engineered whole-cell lipases, were summarized and reviewed. Furthermore, the future research directions of whole-cell lipases were prospected so as to provide a useful reference for the follow-up studies.



Key wordsWhole-cell lipase      Gene engineered      wild-type     
Received: 08 August 2018      Published: 06 December 2018
ZTFLH:  Q55  
Corresponding Authors: Dai-ming ZHA     E-mail: dmzha2015@126.com
Cite this article:

Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases. China Biotechnology, 2018, 38(11): 51-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181107     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I11/51

Source Classification Characteristics
野生型全细胞脂肪酶 从自然界中筛选具有全细胞脂肪酶活力的野生型菌株 丝状真菌、细菌和放线菌 制备简单,只需从自然界中筛选即可;来源较丰富;表达效率普遍较低、反应类型较少、反应活性及稳定性较差
基因工程全细胞脂肪酶 通过基因工程手段构建胞内表达或表面展示的基因工程菌 胞内表达型和表面展示型 制备复杂,需通过繁琐的基因工程手段构建;可根据需求选择目的基因和表达宿主;表达宿主来源较少;表达效率较高、反应类型较多、反应活性及稳定性较好
Table 1 Comparisons of wild-type whole-cell lipases and genetic engineered whole-cell lipases
Research directions Research contents
天然全细胞脂肪酶资源的挖掘 极端环境中筛选具有优良酶学性质的天然全细胞脂肪酶
胞内表达全细胞脂肪酶的构建 宿主资源的挖掘、脂肪酶基因资源的挖掘、表达载体的优化构建、细胞透化技术的开发
表面展示全细胞脂肪酶的构建 宿主资源的挖掘、锚定蛋白的开发、连接肽的影响、多蛋白共展示技术的开发、展示载体的优化构建
生物转化领域的应用 反应类型的拓展及其反应条件的优化
Table 2 Future research directions of whole-cell lipases
[1]   Gupta R, Gupta N, Rathi P . Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 2004,64(6):763-781.
doi: 10.1007/s00253-004-1568-8 pmid: 14966663
[2]   Arpigny J L, Jaeger K E . Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 1999,343(1):177-183.
doi: 10.1042/0264-6021:3430177 pmid: 10493927
[3]   Jaeger K E, Eggert T . Lipases for biotechnology. Current Opinion in Biotechnology, 2002,13(4):390-397.
doi: 10.1016/S0958-1669(02)00341-5
[4]   查代明, 张炳火, 李汉全 , 等. 假单胞菌属脂肪酶的分子生物学研究进展. 中国生物工程杂志, 2015,35(9):114-121.
doi: 10.13523/j.cb.20150916
[4]   Zha D M, Zhang B H, Li H Q , et al. Research advances in molecular biology of Pseudomonas lipases. China Biotechnology, 2015,35(9):114-121.
doi: 10.13523/j.cb.20150916
[5]   Angkawidjaja C, Kanaya S. Family I . 3 lipase: bacterial lipases secreted by the type I secretion system. Cellular and Molecular Life Sciences, 2006,63(23):2804-2817.
doi: 10.1007/s00018-006-6172-x pmid: 17103114
[6]   舒正玉 . 黑曲霉脂肪酶的酶学性质、基因克隆与表达及结构预测. 武汉: 华中科技大学, 2007.
doi: 10.7666/d.d093603
[6]   Shu Z Y . Biochemical characterization, gene cloning and expression and structure prediction of lipase from Aspergillus niger. Wuhan: Huazhong University of Science and Technology, 2007.
doi: 10.7666/d.d093603
[7]   Panizza P, Syfantou N, Pastor F I , et al. Acidic lipase Lip I.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols. Journal of Applied Microbiology, 2013,114(3):722-732.
doi: 10.1111/jam.2013.114.issue-3
[8]   Shu Z Y, Wu J G, Cheng L X , et al. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Applied Biochemistry and Biotechnology, 2012,166(3):536-548.
doi: 10.1007/s12010-011-9446-1
[9]   陈美龄 . 全细胞脂肪酶生物催化剂的构建及其在生物转化中的应用. 杭州: 浙江大学, 2012.
[9]   Chen M L . Construction of lipase whole-cell biocatalyst and its application in bioconversion. Hangzhou: Zhejiang University, 2012.
[10]   周力超 . 应用于油脂废水处理的全细胞脂肪酶的构建及其应用. 武汉: 湖北大学, 2012.
[10]   Zhou L C . Construction of whole-cell lipase and its application for oil waste water treatment. Wuhan: Hubei University, 2012.
[11]   Jin Z, Han S Y, Zhang L , et al. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresource Technology, 2013,130(2):102-109.
doi: 10.1016/j.biortech.2012.12.020 pmid: 23306117
[12]   Yan J, Zheng X, Li S . A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: preparation, characterization and application in biodiesel production. Bioresource Technology, 2014,151(1):43-48.
doi: 10.1016/j.biortech.2013.10.037 pmid: 24189383
[13]   Xu Y, Wang D, Mu X Q , et al. Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase. Journal of Molecular Catalysis B: Enzymatic, 2002,18(1):29-37.
doi: 10.1016/S1381-1177(02)00056-5
[14]   金亮, 徐岩, 曹光群 . 华根霉全细胞脂肪酶催化合成油酸油醇酯. 催化学报, 2006,27(7):611-614.
[14]   Jin L, Xu Y, Cao G Q . Biosynthesis of oleyl oleate by whole-cell lipase from Rhizopus chinensis. Chinese Journal of Catalysis, 2006,27(7):611-614.
[15]   贺芹, 徐岩, 滕云 , 等. 华根霉全细胞脂肪酶催化合成生物柴油. 催化学报, 2008,29(1):41-46.
[15]   He Q, Xu Y, Teng Y , et al. Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. Chinese Journal of Catalysis, 2008,29(1):41-46.
[16]   Sun S Y, Xu Y . Solid-state fermentation for ‘whole-cell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme. Process Biochemistry, 2008,43(2):219-224.
doi: 10.1016/j.procbio.2007.11.010
[17]   Teng Y, Xu Y . Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresource Technology, 2008,99(9):3900-3907.
doi: 10.1016/j.biortech.2007.07.057 pmid: 17888652
[18]   Tamalampudi S, Talukder M R, Hama S , et al. Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 2008,39(1):185-189.
doi: 10.1016/j.bej.2007.09.002
[19]   李迅, 李治林, 何晓云 , 等. 全细胞生物催化麻疯树油制备生物柴油的研究. 现代化工, 2008,28(9):57-59.
[19]   Li X, Li Z L, He X Y , et al. Study on producing biodiesel fuel from Jatropha curcas oil sources catalized by whole cell biocatalyst. Modern Chemical Industry, 2008,28(9):57-59.
[20]   李治林, 李迅, 王飞 , 等. 全细胞生物催化制备生物柴油研究——全细胞生物催化剂催化豆油甲酯化反应. 林产化学与工业, 2009,29(2):1-5.
doi: 10.3321/j.issn:0253-2417.2009.02.001
[20]   Li Z L, Li X, Wang F , et al. Study on biodiesel production by whole-cell biocatalyst——Methylation of soybean oil catalyzed by whole-cell biocatalyst. Chemistry and Industry of Forest Products, 2009,29(2):1-5.
doi: 10.3321/j.issn:0253-2417.2009.02.001
[21]   里伟, 杜伟, 刘德华 , 等. 固定化R. oryzae细胞发酵产胞内脂肪酶及其催化制备生物柴油. 高校化学工程学报, 2008,22(5):822-827.
[21]   Li W, Du W, Liu D H , et al. Intracellular lipase production by immobilized R. oryzae cell and its utilizing for whole cell catalyzed biodiesel production. Journal of Chemical Engineering of Chinese Universities, 2008,22(5):822-827.
[22]   Hermansyah H, Faiz M B, Arbianti R . Kinetic study of immobilized whole-cell lipase Rhizopus Oryzae as biocatalyst in biodiesel synthesis through non-alcohol route. International Journal of Environmental Science and Development, 2015,6(6):439-444.
doi: 10.7763/IJESD.2015.V6.633
[23]   Zhou G, Chen G, Yan B . Two-step biocatalytic process using lipase and whole cell catalysts for biodiesel production from unrefined jatropha oil. Biotechnology Letters, 2015,37(10):1959-1963.
doi: 10.1007/s10529-015-1883-4 pmid: 26063623
[24]   Bharathiraja B, Jayamuthunagai J, Praveenkumar R , et al. The kinetics of interesterfication on waste cooking oil (sunflower oil) for the production of fatty acid alkyl esters using a whole cell biocatalyst (Rhizopus oryzae) and pure lipase enzyme. International Journal of Green Energy, 2015,12(10):1012-1017.
doi: 10.1080/15435075.2014.882339
[25]   Omar I C, Ilias N . Characteristics of cell-bound lipase production by a newly isolated strain of Aspergillus flavus. Pertanika Journal of Science and Technology, 1996,4(1):1-9.
[26]   Yan H, Zhang Q, Wang Z . Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catalysis Communications, 2014,45:59-62.
doi: 10.1016/j.catcom.2013.10.018
[27]   Li C, Li L, Zhou H , et al. Improving yield of 1,3-diglyceride by whole-cell lipase from A. niger GZUF36 catalyzed glycerolysis via medium optimization. Journal of the Brazilian Chemical Society, 2015,26(2):247-254.
[28]   Li C, Zhang F, Gao Z , et al. Effects of organic solvent, water activity, and salt hydrate pair on the sn-1,3 selectivity and activity of whole-cell lipase from Aspergillus niger GZUF36. Applied Microbiology and Biotechnology, 2018,102(1):225-235.
doi: 10.1007/s00253-017-8597-6
[29]   Guldhe A, Singh P, Kumari S , et al. Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renewable Energy, 2016,85:1002-1010.
doi: 10.1016/j.renene.2015.07.059
[30]   Rakchai N, Aran H, Zimmermann W . The production of immobilized whole-cell lipase from Aspergillus nomius ST57 and the enhancement of the synthesis of fatty acid methyl esters using a two-step reaction. Journal of Molecular Catalysis B: Enzymatic, 2016,133:S128-S136.
doi: 10.1016/j.molcatb.2016.12.006
[31]   Jacobsen T, Jensen B, Olsen J , et al. Extracellular and cell-bound lipase activity in relation to growth of Geotrichum candidum. Applied Microbiology and Biotechnology, 1989,32(3):256-261.
[32]   Druet D, Abbadi N, Comeau L . Purification and characterization of the extracellular and cell-bound lipases from a Penicillium cyclopium variety. Applied Microbiology and Biotechnology, 1992,37(6):745-749.
doi: 10.1007/BF00174840
[33]   Yan J Y, Yan Y J . Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Applied Microbiology and Biotechnology, 2008,78(3):431-439.
doi: 10.1007/s00253-007-1331-z pmid: 18193214
[34]   Yu L J, Xu Y, Wang X Q , et al. Highly enantioselective hydrolysis of DL-menthyl acetate to L-menthol by whole-cell lipase from Burkholderia cepacia ATCC 25416. Journal of Molecular Catalysis B: Enzymatic, 2007,47(3):149-154.
doi: 10.1016/j.molcatb.2007.04.011
[35]   Zha D, Xu L, Zhang H , et al. Molecular identification of lipase LipA from Pseudomonas protegens Pf-5 and characterization of two whole-cell biocatalysts Pf-5 and Top10lipA. Journal of Microbiology and Biotechnology, 2014,24(5):619-28.
doi: 10.4014/jmb.1312.12005 pmid: 24548931
[36]   赖学能, 李晓凤, 赵光磊 . 秦皮甲素酰化反应中脂肪酶诱导剂对全细胞催化行为的影响及其产物结构鉴定. 现代食品科技, 2015,31(7):37-43.
[36]   Lai X N, Li X F, Zhao G L . Effect of lipase induction on whole-cell biocatalyst behavior during esculin acylation and structural identification of products. Modern Food Science and Technology, 2015,31(7):37-43.
[37]   dos Santos J B C, da Silva Cruz R G, Tardioli P W . Production of whole-cell lipase from Streptomyces clavuligerus in a bench-scale bioreactor and its first evaluation as biocatalyst for synthesis in organic medium. Applied Biochemistry and Biotechnology, 2017,183(1):218-240.
doi: 10.1007/s12010-017-2440-5 pmid: 28236191
[38]   Chen R R . Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Applied Microbiology and Biotechnology, 2007,74(4):730-738.
doi: 10.1007/s00253-006-0811-x pmid: 17221194
[39]   Matsumoto T, Takahashi S, Kaieda M , et al. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Applied Microbiology and Biotechnology, 2001,57(4):515-520.
doi: 10.1007/s002530100733 pmid: 11762598
[40]   Adachi D, Hama S, Nakashima K , et al. Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresource Technology, 2013,135(2):410-416.
doi: 10.1016/j.biortech.2012.06.092 pmid: 22850174
[41]   Amoah J, Ho S H, Hama S , et al. Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochemical Engineering Journal, 2016,105:10-15.
doi: 10.1016/j.bej.2015.08.007
[42]   Amoah J, Ho S H, Hama S , et al. Conversion of Chlamydomonas sp. JSC4 lipids to biodiesel using Fusarium heterosporum lipase-expressing Aspergillus oryzae whole-cell as biocatalyst. Algal Research, 2017,28:16-23.
doi: 10.1016/j.algal.2017.10.003
[43]   Jung H C, Ko S, Ju S J , et al. Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities. Journal of Molecular Catalysis B: Enzymatic, 2003,26(3):177-184.
doi: 10.1016/j.molcatb.2003.05.007
[44]   Jung H C, Kwon S J, Pan J G . Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnology, 2006,6(1):23.
doi: 10.1186/1472-6750-6-23 pmid: 16620394
[45]   Lee S H, Choi J I, Han M J , et al. Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnology and Bioengineering, 2005,90(2):223-230.
doi: 10.1002/(ISSN)1097-0290
[46]   Lee S H, Lee S Y, Park B C . Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Applied and Environmental Microbiology, 2005,71(12):8581-8586.
doi: 10.2135/cropsci1999.0011183X003900030029x pmid: 1317447
[47]   Kim S J, Song J K, Kim H K . Cell surface display of Staphylococcus haemolyticus L62 lipase in Escherichia coli and its application as a whole cell biocatalyst for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 2013,97(23):54-61.
doi: 10.1016/j.molcatb.2013.07.017
[48]   黎小军, 林陈水 . Burkholderia cepacia XYU-6脂肪酶的克隆及其细胞表面展示. 江西师范大学学报 (自然科学版), 2015,39(5):502-506.
[48]   Li X J, Lin C S . The cloning and cell surface display of a lipase from Burkholderia cepacia XYU-6. Journal of Jiangxi Normal University( Natural Science), 2015,39(5):502-506.
[49]   王雨 . 变形杆菌脂肪酶在大肠杆菌中的表面展示及其制备生物柴油研究. 武汉: 湖北大学, 2016.
[49]   Wang Y . Proteus sp. lipase displayed on Escherichia coli cell surface and its application in biodiesel production. Wuhan: Hubei University, 2016.
[50]   田淑芳, 王雨, 李春华 . 变形杆菌脂肪酶在大肠杆菌细胞表面的展示表达及重组酶的特性. 湖北大学学报 (自然科学版), 2018,40(1):1-6.
doi: 10.3969/j.issn.1000-2375.2018.01.001
[50]   Tian S F, Wang Y, Li C H . Display expression of a lipase from Proteus sp. on the Escherichia coli cell surface and characterization of the recombinant enzyme. Journal of Hubei University (Natural Science), 2018,40(1):1-6.
doi: 10.3969/j.issn.1000-2375.2018.01.001
[51]   Chen H, Tian R, Ni Z , et al. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles, 2015,19(4):799-808.
doi: 10.1007/s00792-015-0755-0 pmid: 26026992
[52]   Jawad Ullah. 连接肽对枯草杆菌芽孢衣壳蛋白B表面展示海栖热袍菌脂肪酶Tm1350的影响. 镇江: 江苏大学, 2017.
[52]   Jawad U . Impact of peptide linkers on T. maritima lipase Tm1350 displayed on B. subtilis spore surface using CotB as fusion partner. Zhenjiang: Jiangsu University, 2017.
[53]   Kim J . Surface display of lipolytic enzyme, lipase A and lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnology and Bioprocess Engineering, 2017,22(4):462-468.
doi: 10.1007/s12257-017-0205-1
[54]   刘文山 . 脂肪酶在酿酒酵母中的表面展示研究. 武汉: 华中科技大学, 2010.
doi: 10.7666/d.d152597
[54]   Liu W S . Surface display of lipases in Saccharomyces cerevisiae. Wuhan: Huazhong University of Science and Technology, 2010.
doi: 10.7666/d.d152597
[55]   潘小幸 . 白地霉脂肪酶在酿酒酵母和毕赤酵母细胞表面的展示研究. 武汉: 华中科技大学, 2012.
[55]   Pan X X . Surface display of Geotrichum candidum lipase in Saccharomyces cerevisiae and Pichia pastoris. Wuhan: Huazhong University of Science and Technology, 2012.
[56]   赵敏洁, 蔡海莺, 李杨 , 等. 脂肪酶的酵母细胞表面展示及其应用. 中国食品学报, 2017,17(5):152-160.
[56]   Zhao M J, Cai H Y, Li Y , et al. Yeast cell surface display for lipase and its applications. Journal of Chinese Institute of Food Science and Technology, 2017,17(5):152-160.
[57]   Li W, Shi H, Ding H , et al. Cell surface display and characterization of Rhizopus oryzae lipase in Pichia pastoris using Sed1p as an anchor protein. Current Microbiology, 2015,71(1):150-155.
doi: 10.1007/s00284-015-0835-5 pmid: 26013444
[58]   Moura M V H, Silva G P D, Freire D M G , et al. Displaying lipase B from Candida antarctica in Pichia pastoris using the yeast surface display approach: prospection of a new anchor and characterization of the whole cell biocatalyst. PloS One, 2015,10(10):e0141454.
doi: 10.1371/journal.pone.0141454 pmid: 26510006
[59]   Wang P, He J, Sun Y , et al. Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B. Applied Microbiology and Biotechnology, 2016,100(13):1-13.
doi: 10.1007/s00253-015-7019-x pmid: 26476642
[60]   张蕊 . 酿酒酵母细胞表面展示米根霉脂肪酶制备全细胞催化剂及其特性研究. 北京: 北京化工大学, 2015.
[60]   Zhang R . Rhizopus oryzae lipase surface displaying on Saccharomyces cerevisiae as whole-cell catalyst and its properties. Beijing: Beijing University of Chemical Technology, 2015.
[61]   Yuzbasheva E Y, Yuzbashev T V, Perkovskaya N I , et al. Cell surface display of Yarrowia lipolytica lipase Lip2p using the cell wall protein YlPir1p, its characterization, and application as a whole-cell biocatalyst. Applied Biochemistry and Biotechnology, 2015,175(8):3888-3900.
doi: 10.1007/s12010-015-1557-7 pmid: 25773979
[62]   代敏 . 具有协同效应的南极假丝酵母脂肪酶B和疏棉状嗜热丝孢菌脂肪酶在毕赤酵母中的共展示研究. 武汉: 华中科技大学, 2012.
[62]   Dai M . Surface display of Candida antarctica lipase B and Thermomyces lanuginosus lipase with synergy in Pichia pastoris. Wuhan: Huazhong University of Science and Technology, 2012.
[63]   Yan Y J, Xu L, Dai M . A synergetic whole-cell biocatalyst for biodiesel production. RSC Advances, 2012,2(15):6170-6173.
doi: 10.1039/c2ra20974h
[64]   吴慧娟 . 黑曲霉脂肪酶A在毕赤酵母细胞表面的展示研究. 武汉: 华中科技大学, 2013.
doi: 10.7666/d.D410960
[64]   Wu H J . Surface display of Aspergillus niger lipase A in Pichia pastoris. Wuhan: Huazhong University of Science and Technology, 2013.
doi: 10.7666/d.D410960
[65]   张燕 . 在毕赤酵母表面共展示具有协同效应的米根霉脂肪酶和褶皱假丝酵母脂肪酶LIP1的研究. 武汉: 华中科技大学, 2014.
[65]   Zhang Y . Co-display of Rhizopus oryzae lipase and Candida rugosa lipase 1 with synergy on the cell wall of Pichia pastoris. Wuhan: Huazhong University of Science and Technology, 2014.
[66]   李锚 . 表面共展示南极假丝酵母脂肪酶B与嗜热丝孢菌脂肪酶全细胞催化剂制备及其制备生物柴油研究. 武汉: 华中科技大学, 2014.
[66]   Li M . Whole-cell catalyst preparation of surface co-displayed Candida antarctica lipase B and Thermomyces lanuginosus lipase and its application in biodiesel production. Wuhan: Huazhong University of Science and Technology, 2014.
[1] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[2] HU Fu,LI Qian,ZHU Ben-Wei,NING Li-Min,YAO Zhong,SUN Yun,DU Yu-guang. Research Progress in Ulvan Lyase[J]. China Biotechnology, 2019, 39(8): 104-113.
[3] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[4] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[5] XIE Xi-zhen, LIN Juan, XIE Yong, YE Xiu-yun. Separation and Purification of Agarase and Study on Its Properties[J]. China Biotechnology, 2017, 37(1): 46-52.
[6] WANG Li-yan, WANG Yu, WU Jian-ping, XU Gang, YANG Li-rong. Functional Expression of a Nitrile Hydratase from Klebsiella oxytoca KCTC 1686 in E. coli[J]. China Biotechnology, 2016, 36(12): 42-48.
[7] YANG Yang, YANG Jiang-ke, XIONG Wei, LIANG Jian-fang, DUAN Wei-wei, CHAO Qun-fang. Cloning and Expression of Dioxygenase Gene from Aeromonas sp. XJ-6 and Promoting Degradation of Tyr[J]. China Biotechnology, 2016, 36(5): 59-67.
[8] KE Xia, DING Guan-jun, SUN Jun, Wang Lu, ZHENG Yu-guo. Vitamin D3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis[J]. China Biotechnology, 2016, 36(5): 89-96.
[9] WU Hong-li, XUE Yong, LIU Jian, GAN Li-hui, LONG Min-nan. Research Progress of Acetyl Xylan Esterase[J]. China Biotechnology, 2016, 36(3): 102-110.
[10] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.
[11] CHEN Bao-zhen, LI Hong-mei, WANG Wei-jie, CHEN Qun-yi. Establishing Pre-screening Method to Select Thymidine Phosphorylase Strains and Its Application[J]. China Biotechnology, 2014, 34(12): 78-83.
[12] WANG Yong-gang, MA Yan-lin, MA Jian-zhong, MA Xue-qing, REN Hai-wei. The Study on Expression,Purification and Characterization of α-amylase from Solanum tuberosum in P.pastoris[J]. China Biotechnology, 2014, 34(9): 56-62.
[13] PEI Zheng-pei, LI Bo, ZHANG Wei, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei, BU Guo-jian. Large Scale Purification of Pharmaceutical Grade Microbial Transglutaminase from Streptoverticillium mobaraense[J]. China Biotechnology, 2014, 34(4): 53-58.
[14] LI Hong-yan, ZHOU Si-tian, MA Jian-hui, WANG Yan-xing, SUN Mei-hao. Purification and Characterization of Pyruvate Kinase II from Escherichia coli and Its Application as a Coupling Enzyme[J]. China Biotechnology, 2013, 33(5): 68-74.
[15] CHEN Sheng, LI Yan, LIU Huan, YAN Ming, XU Lin. Research Advances in Biosynthesis of UDPG[J]. China Biotechnology, 2012, 32(09): 125-130.