Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (1): 72-79    DOI: 10.13523/j.cb.2009043
    
Advances in Expression of Human Epidermal Growth Factor in Yeast
SHI Peng-cheng,JI Xiao-jun()
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
Download: HTML   PDF(1635KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Human epidermal growth factor (hEGF) is a kind of protein isolated from the human body. It can stimulate the cell growth and thus has a wide range of clinical applications. The use of genetic engineering to produce hEGF has great economic prospects due to its limited natural source and high cost of chemical synthesis. Yeast expression system, as a typical eukaryotic expression system, can perform post-translational modifications, such as glycosylation, disulfide bond formation, etc., and can effectively secrete the proteins outside of the cell so that the recombinant protein can be separated from the extracellular medium easily. Therefore, yeast is especially favored in the research of producing recombinant hEGF. This article reviews the progress of producing hEGF in various yeast expression systems, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, etc., and on this base, their pros and cons were compared. The future prospects of using yeast expression to produce hEGF are discussed in light of the current progress, challenges, and trends in this field. Guidelines for future studies are finally proposed.



Key wordsHuman epidermal growth factor      Saccharomyces cerevisiae      Pichia pastoris      Yarrowia lipolytica      Expression strategy     
Received: 27 September 2020      Published: 09 February 2021
ZTFLH:  Q819  
Corresponding Authors: Xiao-jun JI     E-mail: xiaojunji@njtech.edu.cn
Cite this article:

SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast. China Biotechnology, 2021, 41(1): 72-79.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2009043     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I1/72

Fig.1 Primary structure of human epidermal growth factor
信号序列 hEGF产量(mg/L)
α-factor prepro 3.17
共有序列 0.59
共有序列(转化酶突变) 0.52
共有序列+6aa(KEX2蛋白酶切割位点) 0.57
转化酶突变+6aa(KEX2蛋白酶切割位点) 0.54
共有序列+19aa(无Asn连接糖基化位点) 3.39
共有序列+19aa(有Asn连接糖基化位点) 3.53
Table 1 The secretion efficiency of synthetic signal sequences [48]
宿主系统 方法 载体 效果 hEGF产量
(mg/mL)
参考
Saccharomyces
cerevisiae
构建了一个包含酵母GAPDH启动子、合成hEGF基因和酵母ADH-1终止子的质粒 pYEGF-2 在胞内表达出有活性的EGF 30.0 Urdea[44]
在hEGF基因的上游插入了酿酒酵母来源的α因子前序 pYaEGF-23 能将超过90%成熟的hEGF分泌到培养基中 4.0 Brake[45]
设计不同的前导序列 pSW6 提高了酿酒酵母中hEGF的分泌 3.2 Clements[48]
研究了hEGF的表达动力学 pYaEGF-25 筛选合适的培养基 13.0 Coppella[50]
对生理变量,培养基和生物反应器操作模式进行了综合研究 - 提高hEGF发酵过程的生产率 259.2 Valdes [51]
Pichia pastoris 人工合成表皮生长因子在甲基营养型酵母中的表达 Puc19-KαEGF51及 pAO815-EGF51 分泌完好生物活性和正确物理性质的hEGF 100 黄秉仁[52]
优化毕赤酵母表达hEGF时的培养条件 pPIC9K 分析培养基、甲醇浓度、pH和温度对生产的影响 2.27 Eissazadeh[57]
在毕赤酵母X33中表达hEGF并纯化 pPICZa A 成功诱导蛋白分泌并纯化 5.8 高云鹏[65]
Hansenula
polymorpha
在多形汉逊酵母中表达hEGF基因 PMOX -EGF 敲除KEX1基因能减少hEGF的C端水解 2.5 Heo[59]
构建动力学模型,研究细胞生长和hEGF生产的pH依赖性 PMOX 在分批补料培养的诱导期中切换pH值可提高产量 80.0 Moon[60]
Yarrowia
lipolytica
hEGF基因与碱性胞外蛋白酶的前导肽和proⅠ融合表达 pXEGF1 细胞分泌酸性蛋白酶使产量降低 0.1 Hamsa[63]
Table 2 Expression of human epidermal growth factor in yeast
[1]   Cohen S. Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proceedings of the National Academy of Sciences of the United States of America, 1960,46(3):302-311.
[2]   Gregory H. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature, 1975,257(5524):325-327.
[3]   Bell G I, Fong N M, Stempien M M, et al. Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Research, 1986,14(21):8427-8446.
pmid: 3491360
[4]   曾嵘, 邵晓霞, 夏其昌. 人表皮生长因子肽谱及一级结构的质谱法分析. 生物化学与生物物理学报(英文), 1999,31(1):31-36.
[4]   Zeng R, Shao X X, Xia Q C. Peptide mapping and primary structure analysis of hEGF by mass spectrometry. Acta Biochimica et Biophysica Sinica, 1999,31(1):31-36.
[5]   Arturson G. Epidermal growth factor in the healing of corneal wounds, epidermal wounds and partial-thickness scalds: a controlled animal study. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1984,18(1):33-37.
[6]   Jahovic N, Guzel E, Arbak S, et al. The healing-promoting effect of saliva on skin burn is mediated by epidermal growth factor (EGF): role of the neutrophils. Burns, 2004,30(6):531-538.
[7]   Peng H, Wen T C, Tanaka J, et al. Epidermal growth factor protects neuronal cells in vivo and in vitro against transient forebrain ischemia- and free radical-induced injuries. Journal of Cerebral Blood Flow and Metabolism, 1998,18(4):349-360.
pmid: 9538899
[8]   Chauvin K, Bratton C, Parkins C, et al. Healing large tympanic membrane perforations using hyaluronic acid, basic fibroblast growth factor, and epidermal growth factor. Otolaryngology-Head and Neck Surgery, 1999,121(1):43-47.
[9]   Inoue M, Katakami C. The effect of hyaluronic acid on corneal epithelial cell proliferation. Investigative Ophthalmology & Visual Science, 1993,34(7):2313-2315.
[10]   Berlanga J, Caballero M E, Ramirez D, et al. Epidermal growth factor protects against carbon tetrachloride-induced hepatic injury. Clinical Science, 1998,94(3):219-223.
[11]   Jones D E, Tranpatterson R, Cui D, et al. Epidermal growth factor secreted from the salivary gland is necessary for liver regeneration. American Journal of Physiology-gastrointestinal and Liver Physiology, 1995,268(5):872-878.
[12]   Wong W K R, Ng K L, Lam C C, et al. Review article: reasons for underrating the potential of human epidermal growth factor in medical applications. Journal of Analytical & Pharmaceutical Research, 2017,4(2):00101.
[13]   Schouest J M, Luu T K, Moy R L, et al. Improved texture and appearance of human facial skin after daily topical application of barley produced, synthetic, human-like epidermal growth factor (EGF) serum. Journal of Drugs in Dermatology, 2012,11(5):613-620.
[14]   Aldag C, Teixeira D N, Leventhal P S, et al. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Clinical, Cosmetic and Investigational Dermatology, 2016,9:411-419.
[15]   Ptitsyn L R, Altman I B. Extracellular production of recombinant human epidermal growth factor (hEGF) in Escherichia coli cells. Bioorganicheskaia Khimiia, 1999,25(12):923-929.
[16]   Lam K, Chow K C, Wong W K, et al. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. Journal of Biotechnology, 1998,63(3):167-177.
pmid: 9803531
[17]   Topczewska J M, Bolewska K. Cloning and expression of the hEGF gene in Saccharomyces cerevisiae. Acta Biochimica Polonica, 1993,40(1):4-7.
pmid: 8372563
[18]   Yu W, Chen J, Zhao X L, et al. Expression of polyhedrin-hEGF fusion protein in cultured cells and larvae of Bombyx mori. African Journal of Biotechnology, 2006,5(11):1034-1040.
[19]   Gellissen G, Kunze G, Gaillardin C, et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica- A comparison. Fems Yeast Research, 2005,5(11):1079-1096.
pmid: 16144775
[20]   Goffeau A, Barrell B, Bussey H, et al. Life with 6 000 genes. Science, 1996,274(5287):546-567.
[21]   Shen M W, Fang F, Sandmeyer S, et al. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast, 2012,29(12):495-503.
doi: 10.1002/yea.2930 pmid: 23166051
[22]   Siddiqui M S, Thodey K, Trenchard I, et al. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. Fems Yeast Research, 2012,12(2):144-170.
[23]   Galao R P, Scheller N, Alvesrodrigues I, et al. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microbial Cell Factories, 2007,6(1):32-32.
[24]   Petranovic D, Nielsen J. Can yeast systems biology contribute to the understanding of human disease. Trends in Biotechnology, 2008,26(11):584-590.
pmid: 18801589
[25]   Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012,30(5):1108-1118.
doi: 10.1016/j.biotechadv.2011.09.011 pmid: 21964262
[26]   Huang C, Lowe A J, Batt C A, et al. Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Applied Microbiology and Biotechnology, 2010,87(2):401-410.
[27]   Kim H, Yoo S J, Kang H A, et al. Yeast synthetic biology for the production of recombinant therapeutic proteins. Fems Yeast Research, 2014,15(1):1-16.
doi: 10.1111/1567-1364.12171 pmid: 24903193
[28]   Ogata K, Nishikawa H, Ohsugi M, et al. A yeast capable of utilizing methanol. Agricultural and Biological Chemistry, 1969,33(10):1519-1520.
[29]   Cregg J M, Barringer K J, Hessler A Y, et al. Pichia pastoris as a host system for transformations. Molecular and Cellular Biology, 1985,5(12):3376-3385.
[30]   Grinna L S, Tschopp J F. Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast, 1989,5(2):107-115.
doi: 10.1002/yea.320050206 pmid: 2711751
[31]   Choi B, Bobrowicz P, Davidson R C, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(9):5022-5027.
[32]   Hamilton S R, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science, 2003,301(5637):1244-1246.
[33]   Vervecken W, Kaigorodov V, Callewaert N, et al. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Applied and Environmental Microbiology, 2004,70(5):2639-2646.
[34]   Van Dijk R, Faber K N, Kiel J A, et al. The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme and Microbial Technology, 2000,26(9):793-800.
[35]   Gellissen G, Hollenberg C P. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis: a review. Gene, 1997,190(1):87-97.
[36]   Gellissen G, Kunze G, Gaillardin C, et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica- A comparison. Fems Yeast Research, 2005,5(11):1079-1096.
[37]   Gellissen G. Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology, 2000,54(6):741-750.
doi: 10.1007/s002530000464 pmid: 11152064
[38]   Veenhuis M, Kram A M, Kunau W H, et al. Excessive membrane development following exposure of the methylotrophic yeast Hansenula polymorpha to oleic acid-containing media. Yeast, 1990,6(6):511-519.
[39]   Baerends R J, Faber K N, Kram A M, et al. A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. Journal of Biological Chemistry, 2000,275(14):9986-9995.
[40]   Pfizer Inc. Process for transformation of Yarrowia lipolytica: US4880741.1989-11-14[2020-9-24]. http://njtech.patsev.com/search/patentDetail.
[41]   Institute National de la Recherche Agronomique. Transformation vector for yeast Yarrowia lipolytica, transformation process and transformed yeast: EP0166659A2. 1986-1-2[2020-9-24]. http://njtech.patsev.com/search/patentDetail.
[42]   De Pourcq K, Vervecken W, Dewerte I, et al. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microbial Cell Factories, 2012,11(1):53-65.
[43]   De Pourcq K, Tiels P, Van Hecke A, et al. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One, 2012,7(6):e39976.
[44]   Urdea M S, Merryweather J P, Mullenbach G T, et al. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast. Proceedings of the National Academy of Sciences, 1983,80(24):7461-7465.
[45]   Brake A J, Merryweather J P, Coit D G, et al. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 1984,81(15):4642-4646.
[46]   George-Nascimento C, Gyenes A, Halloran S M, et al. Characterization of recombinant human epidermal growth factor produced in yeast. Biochemistry, 1988,27(2):797-802.
[47]   黄秉仁, 张岱, 迟来顺, 等. 人表皮生长因子基因在酵母系统中的表达. 中国医学科学院学报, 1989,(5):331-337.
[47]   Huang B R, Zhang D, Chi L S, et al. Human epidermal growth factor gene is expressed in Saccharomyces cerevosoae. Acta Academiae Medicinae Sinicae, 1989, (5):331-337.
[48]   Clements J M, Catlin G, Price M J, et al. Secretion of human epidermal growth factor from Saccharomyces cerevisiae using synthetic leader sequences. Gene, 1991,106(2):267-271.
[49]   Caplan S, Green R, Rocco J W, et al. Glycosylation and structure of the yeast MF alpha 1 alpha-factor precursor is important for efficient transport through the secretory pathway. Journal of Bacteriology, 1991,173(2):627-635.
[50]   Coppella S J, Dhurjati P. A mathematical description of recombinant yeast. Biotechnology and Bioengineering, 1990,35(4):356-374.
pmid: 18592530
[51]   Valdes J, Mantilla E, Marquez G, et al. Physiological study in Saccharomyces cerevisiae for overproduction of a homogeneous human epidermal growth factor molecule. Biotecnologia Aplicada, 2009,26(2):166-167.
[52]   黄秉仁, 蔡良琬, 廖洪涛, 等. 人工合成表皮生长因子基因在甲基营养型酵母中的高效表达. 中国生物化学与分子生物学报, 1998,(5):46-51.
[52]   Huang B R, Cai L W, Liao H T, et al. High level expression of chemically synthesized human epidermal growth factor gene in the yeast Pichia pastoris. Chinese Journal of Biochemistry Molecular Biology, 1998, (5):46-51.
[53]   黄秉仁, 蔡良婉, 王欣, 等. 甲基营养型酵母系统表达的重组人表皮生长因子的纯化及其性质. 中国医学科学院学报, 2001,23(2):106-110.
[53]   Huang B R, Cai L W, Wang X, et al. Purification of recombinant hEGF expressed in yeast Pichia pastoris and the study on its characters. Acta Academiae Medicinae Sinicae, 2001,23(2):106-110.
[54]   Mullhaupt B, Feren A, Fodor E J, et al. Liver expression of epidermal growth factor RNA. Rapid increases in immediate-early phase of liver regeneration. Journal of Biological Chemistry, 1994,269(31):19667-19670.
[55]   Khan M, Khan F, Ahmad N, et al. Expression line approach to recombinant human epidermal growth factor into the yeast, Pichia pastoris from Huh-7 cell line. Molecular Biology Reports, 2014,41(3):1445-1451.
doi: 10.1007/s11033-013-2989-1 pmid: 24413989
[56]   Khan M, Ahmed N, Khan M I, et al. Bioactivity studies of Huh-7 cells derived human epidermal growth factor expressed in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 2017,81(6):1114-1119.
[57]   Eissazadeh S, Moeini H, Dezfouli M G, et al. Production of recombinant human epidermal growth factor in Pichia pastoris. Brazilian Journal of Microbiology, 2017,48(2):286-293.
doi: 10.1016/j.bjm.2016.10.017 pmid: 27998673
[58]   熊振宇, 李晓瑾, 李志鹏. 重组人表皮生长因子在毕赤酵母中的表达与纯化及其复合可溶性微针的制备. 生物技术通讯, 2019(4):516-522.
[58]   Xiong Z Y, Li X J, Li Z P. Expression and purification of recombinant human epidermal growth factor in Pichia pastoris and preparation of composite soluble microacupuncture. Letters in Biotechnology, 2019(4):516-522.
[59]   Heo J, Won H S, Kang H A, et al. Purification of recombinant human epidermal growth factor secreted from the methylotrophic yeast Hansenula polymorpha. Protein Expression and Purification, 2002,24(1):117-122.
[60]   Moon H, Kim H D, Rhee S, et al. Optimal strategy of pH control in the production of recombinant human epidermal growth factor by Hansenula polymorpha. Process Biochemistry, 2002,38(4):487-495.
[61]   Bishop P D, Teller D C, Smith R A, et al. Expression, purification, and characterization of human factor XIII in Saccharomyces cerevisiae. Biochemistry, 1990,29(7):1861-1869.
pmid: 2184890
[62]   Heslot H. Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica. Advances in Biochemical Engineering/Biotechnology, 1990,43:43-73.
[63]   Hamsa P V, Kachroo P, Chattoo B B, et al. Production and secretion of biologically active human epidermal growth factor in Yarrowia lipolytica. Current Genetics, 1998,33(3):231-237.
[64]   Madzak C, Gaillardin C, Beckerich J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology, 2004,109(1-2):63-81.
[65]   高云鹏, 赵雨, 王新宇, 等. 重组人表皮生长因子在毕赤酵母X33中的构建、表达和纯化. 科学技术与工程, 2018,18(17):141-144.
[65]   Gao Y P, Zhao Y, Wang X Y, et al. Construction, expression and purification of recombinant human epidermal growth factor in Pichia pastoris X33. Science Technology and Engineering, 2018,18(17):141-144.
[1] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[2] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[3] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[4] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[5] SONG Yi-mei,JIA Xiu-wei,LI Shu-biao,GAO Cui-juan. Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton[J]. China Biotechnology, 2020, 40(9): 77-86.
[6] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[7] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[8] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[9] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[10] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[11] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[12] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[13] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[14] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[15] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.