Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 8-14    DOI: 10.13523/j.cb.20190702
    
Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris
Yuan TIAN(),Yan-ling LI
College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
Download: HTML   PDF(1034KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: A strain of Pichia pastoris producing fusaruside was constructed to solve the source problem of fusaruside, a selective immunosuppressive molecule.Method: Two related biosynthetic genes coding delta 3(E)-sphingolipid desaturase [Δ3(E)-SD] and delta 10(E)-sphingolipid desaturase [Δ10(E)-SD] were amplified from fungus Fusarium graminearum PH-1. 2A peptide based strategy was used to construct the co-expression vector. Then the 2A polyprotein construct was transformed into Pichia pastoris GS115 for induction. Finally, P. pastoris cells were extracted with methanol and dichloromethane, and the extract was detected by high performance liquid chromatography mass spectrometer (HPLC-MS).Result: The two desaturases were successfully co-expressed in P. pastoris. SDS-PAGE showed that the molecular weight of Δ3(E)-SD and Δ10(E)-SD were about 48kDa and 65kDa, respectively. HPLC-MS indicated that fusaruside could be produced by the recombinant yeast.Conclusion: Compared with fusarium which producing fusaruside, the engineered yeast had shorter fermentation time and higher yield, laying a foundation for further development and application of fusaruside.



Key wordsPichia pastoris      Desaturase      2A peptide      Co-expression      Fusaruside     
Received: 20 December 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Yuan TIAN     E-mail: tianyuan2005hit@163.com
Cite this article:

Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris. China Biotechnology, 2019, 39(7): 8-14.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190702     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/8

Primer/Gene name Primer/Gene sequence (5'-3') Purpose
D3-F ATGGCCGAACACCTCGTCTTC amplication of Δ3(E)-sd
D3-R CTGCCTCTTAAACTTCTTCT amplication of Δ3(E)-sd
D10-F ATGGCGCATAGCTCTTTCGTT amplication of Δ10(E)-sd
D10-R CTAGTGATGAGAGAGATCAC amplication of Δ10(E)-sd
D3-F1 GCCACCATGGCCGAACACCTC modification of Δ3(E)-sd
D3-R1 AGTGAAGGATTCCATGTATCCATGAGAAATTG modification of Δ3(E)-sd
D3-F2 CAATTTCTCATGGATACATGGAATCCTTCACT modification of Δ3(E)-sd
D3-R2 GTGGCTCCGGACCCCTGCCTCTTAAACTTCT modification of Δ3(E)-sd
D10-F1 GAAAACCCCGGTCCTATGGCGCATAGCTCTTT modification of Δ10(E)-sd
D10-R1 GCGATATATCGAAGGAACTCGATCCCATAGGCT modification of Δ10(E)-sd
D10-F2 AGCCTATGGGATCGAGTTCCTTCGATATATCGC modification of Δ10(E)-sd
D10-R2 CTAGTGATGAGAGAGATCACCA modification of Δ10(E)-sd
2a GGGTCCGGAGCCACGAACTTCTCTCTGTTAAAGCAAGCAGG
AGACGTGGAAGAAAACCCCGGTCCT
-
Table 1 Primers used in this study and gene sequence coding 2A peptide
Fig.1 Agarose gel electrophoresis of PCR amplified target genes M: DNA marker;Δ3(E)-sd: PCR product with Δ3(E)-sd; Δ10(E)-sd: PCR product with Δ10(E)-sd
Fig.2 Agarose gel electrophoresis of PCR amplified Δ3(E)-sd-2a-Δ10(E)-sd combined gene M: DNA marker; 1: PCR product with Δ3(E)-sd-2a-Δ10(E)-sd
Fig.3 Schematic of co-expression plasmid and identification by digestion M:DNA marker;1:Product of double enzyme digestion
Fig.4 Identification of transformants by PCR M:DNA maker;1-8:PCR products with primer D3-F/D10-R
Fig.5 SDS-PAGE analysis of proteins in the recombinant yeast cells M:Protein marker;1:0h;2:12h;3:24h;4:36h;5:48h;6:60h;7:72h;8:84h
Fig.6 HPLC-MS analysis of extracts from the recombinant yeast cells
Fig.7 1H NMR of fusaruside (CDCl3,400MHz)
Producing strains Total
extract (g)
Fusaruside
(mg)
Yield
(mg/g)
Fusarium sp. [7] 200 24 0.12
Recombinant
P.pastoris
3.6 5 1.39
Table 2 The contrast of the yield of fusaruside from different producing strains
Fig.8 Complete biosynthetic pathway of fusaruside
[1]   刘莹, 王玉斌, 张琪 , 等. 新型小分子免疫抑制剂研究进展. 中国新药杂志, 2011,20(20):1981-1988.
[1]   Liu Y, Wang Y B, Zhang Q , et al. Development in small molecule immunosuppressive drugs. China J New Drugs, 2011,20(20):1981-1988.
[2]   O’Shea J J, Pesu M, Borie D C , et al. A new modality for immunosuppression:targeting the JAK/STAT pathway. Nat Rev Drug Discov, 2004,3(7):555-564.
[3]   Wu X F, Wu X X, Guo W J , et al. Cerebroside D,a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes. Toxicol Appl Pharm, 2012,263(3):296-302.
doi: 10.1016/j.taap.2012.07.001
[4]   Wu X X, Sun Y, Guo W J , et al. Rebuilding the balance of STAT1 and STAT3 signalings by fusaruside,a cerebroside compound, for the treatment of T-cell-mediated fulminant hepatitis in mice. Biochem Pharmacol, 2012,84(9):1164-1173.
doi: 10.1016/j.bcp.2012.08.006
[5]   Li J, Ferris R L . PD-1/SHP-2 negatively regulate Tc1/Th1 phenotypic responses and activation of T cells in the tumor microenvironment. J Immunother Cancer, 2014,2(S3):221.
[6]   Wu X X, Guo W J, Wu L M . et al. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J Immunol, 2012,189(7):3497-3507.
doi: 10.4049/jimmunol.1201006
[7]   Shu R G, Wang F W, Yang Y M , et al. Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp.IF-121,an endophytic fungus in Quercus variabilis. Lipids, 2004,39(7):667-673.
doi: 10.1007/s11745-004-1280-9
[8]   Black F J, Kocienski P . Synthesis of phalluside-1 and Sch II using 1,2-metallate rearrangements. Org Biomol Chem, 2010,8(5):1188-1193.
doi: 10.1039/b920285d
[9]   Ro D K, Paradise E M, Ouellet M , et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006,440(7086):940-943.
[10]   Farhi M, Marhevka E, Ben-Ari J , et al. Generation of thepotent anti-malarial drug artemisinin in tobacco. Nat Biotechnol, 2011,29(12):1072-1074.
[11]   Ternes P, Wobbe T, Schwarz M , et al. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris. J Biol Chem, 2011,286(13):11401-11414.
doi: 10.1074/jbc.M110.193094
[12]   Tian Y, Zhao G Y, Fang W , et al. Δ10(E)-Sphingolipid desaturase involved in fusaruside mycosynthesis and stress adaptation in Fusarium graminearum. Sci Rep, 2015,5:10486.
[13]   Zaüner S, Zahringer U, Lindner B , et al. Identification and functional characterization of the 2-hydroxy fatty N-acyl-Delta3(E)-desaturase from Fusarium graminearum. J Biol Chem, 2008,283(52):36734-36742.
doi: 10.1074/jbc.M807264200
[14]   张欢, 黄思超, 蔡绍晖 . 基于2A肽策略构建多基因表达载体的研究进展. 中国生物工程杂志, 2013,33(1):104-108.
[14]   Zhang H, Huang S C, Cai S H . Development of 2A peptide-based strategies for constructing multicistronic expression vectors. China Biotechnology, 2013,33(1):104-108.
[15]   Brazier-Hicks M, Edwards R . Metabolic engineering of the flavone-C-glycoside pathway using poly protein technology. Metab Eng, 2013,16:11-20.
doi: 10.1016/j.ymben.2012.11.004
[16]   Beekwilder J, van Rossum H M, Koopman F , et al. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. J Biotechno, 2014,192(Part B):383-392.
doi: 10.1016/j.jbiotec.2013.12.016
[17]   Geier M, Fauland P, Vogl T , et al. Compact multi-enzyme pathways in P.pastoris. Chem Commun, 2015,51(9):1643-1646.
doi: 10.1039/C4CC08502G
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[5] Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses[J]. China Biotechnology, 2019, 39(3): 37-45.
[6] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[7] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[8] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[9] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[10] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[11] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[12] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[13] YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris[J]. China Biotechnology, 2017, 37(10): 1-7.
[14] LIANG Dong, XING Yong-qiang, CAI Lu. The Construction and Analysis of the Coexpression Network for the Gene Related to Renal Tumor[J]. China Biotechnology, 2016, 36(2): 30-37.
[15] SHI Hai-su, CHEN Hai-qin, GU Zhen-nan, ZHANG Hao, CHEN Yong-quan, CHEN Wei. Studies of the Cloning, Expression and Function Analysis for Δ6-II Desaturase from Mortierella alpina[J]. China Biotechnology, 2015, 35(12): 37-44.