Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 30-40    DOI: 10.13523/j.cb.1903028
    
Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction
HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian()
Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Life of Science, Beijing Institute of Technology, Beijing 100081, China
Download: HTML   PDF(1274KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The radiation environment exists everywhere in the living space, the results of animal experiments in recent years show that the harm of electromagnetic radiation are mainly concentrated on nervous system toxicity, inducing tumors (especially brain tumors, leukemia) and reproductive system damage. Radiation exposure has the characteristics of wide-area, concealed and cumulative effect. It acts on living organisms, causing a large amount of reactive oxygen species (ROS) in cells. By-products of normal aerobic physiological metabolism in the cells can also generate free radicals, thereby causing damage to the body. In other words, radiation can not only directly act on biological molecules and cause damage to the body, but also indirectly act on the body by acting on biological water and so on to produce free radicals. In order to detect the magnitude of radiation toxicity quickly and easily, there been established radiation biosensors. Engineered bacteria sensors carrying SoxR, RecA, Cda and SulA four promoters and enhanced green fluorescent protein (EGFP) fusion gene related to SOS reaction and oxidative stress reaction were constructed, that is, the promoter-reporter system. First, the four biosensors were treated with chemical damage agents, they all expressed a large amount of green fluorescent protein after stimulation, and then γ-ray irradiation was performed. According to the treatment, the sensor with the highest sensitivity was the RecA promoter engineering bacteria sensor under radiation. The promoter-reporter fusion gene obtained by PCR and overlap PCR, and inserted into the vector PUC19, then transformed into E. coli DH5α. After double-enzyme digestion and sequencing verification, the successful engineered bacteria sensors were disposed of chemical oxidant and physical radiation. The results showed that the four engineering bacteria sensors successfully responded to the oxidant hydrogen peroxide and physical radiation, and the green fluorescence intensity gradually increased with the increase of physical radiation dose (0-30Gy). Among them, the green fluorescence of RecA engineered bacteria sensor was the most obvious after stimulation compared with the other sensors. The use of synthetic biology methods to establish physical radiation sensors based on biological effects successfully, with simple preparation, visibility of results, meeting fast, wide range, online monitoring needs, solving the problem of excessive background value in chemical sensors. It has a good application prospect in the measurement of radiation, radiation on the ground and even in the space.



Key wordsRadiation      Biosensor      SOS reaction      Oxidative stress     
Received: 12 March 2019      Published: 13 August 2020
ZTFLH:  Q81  
Corresponding Authors: Yong-qian ZHANG     E-mail: zyq@bit.edu.cn
Cite this article:

HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction. China Biotechnology, 2020, 40(7): 30-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1903028     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/30

Fig.1 Genetic circuit map(the promoter-reporter system)
名称 功能描述 符号
Promoter 启动子
Regulatory sequence 核糖体结合位点
Terminator 终止子
Reporter(EGFP) 表达绿色荧光蛋白
Table 1 Introduction of genetic components
基因序列名称 引物(5' - 3')
启动子 SoxR Up: ATCTGCATGCTTACGGCTGGTCAATATGCTCGTC(含SphI酶切位点)
Down: GGACTAGTCAAACTAAAGCGCCCTTGT(含SpeI酶切位点)
RecA Up: GAAGAATTCAGCCAAAGCGCAGATGATC(EcoRI酶切位点)
Down: CGCCTTTGCTCACCATTCTAGATTTTACTCCTGTCATGCCG(含XbaI酶切位点)
SulA Up: GAAGAATTCCACAGTACTGTGCACTTTG(含EcoRI酶切位点)
Down: CGCCTTTGCTCACCATTCTAGAAATCAATCCAGCCCCTGTG(含XbaI酶切位点)
Cda Up: GAAGAATTCTGCCAGTCGG(含EcoRI酶切位点)
Down: CGCCTTTGCTCACCATTCTAGAAACACCTCTTTG(含XbaI酶切位点)
报告因子 EGFP for SOS Up: ATTCTAGAATGGTGAGCAAAGGCGAAG(含XbaI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
EGFP for SoxR Up: ATCTGCATGCTTACGGCTGGTCAATATGCTCGTC(含SphI酶切位点)
Down: GGACTAGTCAAACTAAAGCGCCCTTGT(含EcoRI酶切位点)
Table 2 Promoter and reporter gene PCR primers
Fig.2 Schematic diagram of overlap PCR Complementary fragments shall be with ten base pairs considered in intermediate primer design; Up primer of overlap PCR: the upstream primer of the promoter; Down primer of overlap PCR: The downstream primer of the reporter gene
工程菌 引物(5' - 3')
RecA Up: GAAGAATTCAGCCAAAGCGCAGATGATC(EcoRI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
SulA Up: GAAGAATTCCACAGTACTGTGCACTTTG(EcoRI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
Cda Up: CAATGAATTCTGCCAGTCGG(EcoRI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
SoxR Up: ATCTGCATGCTTACGGCTGGTCAATATGCTCGTC(SphI酶切位点)
Down: CCGGAATTCATATAAACGCAGAAAGGCCCACCCGAAGG(EcoRI酶切位点)
Table 3 Primer of overlap PCR
Fig.3 PCR amplification of the target sequence (a)PCR results of promoters and reporter, RecA(lane1), Cda(lane2), SulA(lane3 and 4), SoxR(lane5), EGFP(lane6) (b) Second PCR results of promoter Cda(lane1) and promoter- reporter fusion gene(lane2 and 3, bands of high molecular weight of DNA) by Overlap PCR (c) Overlap PCR results of SoxR-EGFP fusion gene(lane1) and pSB1C3 expression vector was successfully constructed(lane2)
Fig.4 Growth of transformed plate and fluorescence observation under microscope (a),(b) Engineering bacterium transformed growth plate (c) Fluorescence expression in logarithmic growth phase (d) Fluorescence expression at plateau stage
Fig.5 Validation of plasmid by double enzyme digestion (a)The results of double digestion of expression vector pUC19 by EcoRⅠ and HindⅢ(lane4) (b)The results of double digestion of expression vector pSB1C3 by EcoRⅠ and SpeⅠ(lane4 and 5). Control plasmids were primordial plasmids without the insertion of a target fragment(lane3)
Fig.6 Determination of DH5α Escherichia coli growth curve
Fig.7 Stimulation results by chemical damage reagents (a) Fluorescence of RecA engineering bacteria changes with different MMC concentrations (b) Fluorescence of RecA engineering bacteria changes with different H2O2 concentrations (c) Fluorescence of SulA engineering bacteria changes with different MMC concentrations (d) Correlation between fluorescence and H2O2 concentration of SoxR engineering bacteria at 3h
Fig.8 Physical radiation treatment engineering bacteria sensor (a) The fluorescence of Cda engineering bacteria changes with radiation dose varies after irradiation (b) The fluorescence of SoxR engineering bacteria changes with radiation dose varies after irradiation (c) The fluorescence of RecA engineering bacteria changes with cultured duration varies after irradiation (d) Correlation between fluorescence and radiation dose of RecA engineering bacteria at 3h after irradiation
[1]   Reuter S, Gupta S C, Chaturvedi M M, et al. Oxidative stress, inflammation, and cancer: How are they linked. Free Radical Biology and Medicine, 2010,49(11):1603-1616.
doi: 10.1016/j.freeradbiomed.2010.09.006 pmid: 20840865
[2]   Christman M F, Morgan R W, Jacobson F S, et al. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cef J, 1985,41(3):753-762.
[3]   Vickridge E, Planchenault C, Cockram C, et al. Management of E. coli sister chromatid cohesion in response to genotoxic stress. Nature Communications, 2017,8:14618.
doi: 10.1038/ncomms14618 pmid: 28262707
[4]   Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence. Molecular & Cellular Biochemistry, 2004,266(1-2):37-56.
doi: 10.1023/b:mcbi.0000049134.69131.89 pmid: 15646026
[5]   James A I. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Microbiology, 2013,7(11):443-454.
[6]   Bouton C. Nitrosative and oxidative modulation of iron regulatory proteins. Cellular & Molecular Life Sciences Cmls, 1999,55(8-9):1043-1053.
doi: 10.1007/s000180050355 pmid: 10484662
[7]   Pi J B, Zhang Q, Fu J Q, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicology and Applied Pharmacology, 2010,244(1):77-83.
doi: 10.1016/j.taap.2009.05.025 pmid: 19501608
[8]   Pierrej S T, Buckingham J A, Roebucksj, et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. The Journal of Biological Chemistry, 2002,277(47):44784-44790.
doi: 10.1074/jbc.M207217200 pmid: 12237311
[9]   Jomova K, Baros S, Valko M. Redox active metal-induced oxidative stress in biological systems. Transition Metal Chemistry, 2012,37(2):127-134.
doi: 10.1007/s11243-012-9583-6
[10]   Klaunig J E, Wang Z, Pu X, et al. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicology and Applied Pharmacology, 2011,254(2):86-99.
doi: 10.1016/j.taap.2009.11.028 pmid: 21296097
[11]   Barnes, Deborah E. DNA damage: air-breaks. Current Biology, 2002,12(7):262-264.
[12]   Mccubrey J A, Lahair M M, Franklin R A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidiants & Redox Signaling, 2006,8(9):1775-1789.
[13]   Kanthasamy A G, Kitazawa M, Kanthasamy A, et al. Role of proteolytic activation of protein kinase Cδ in oxidative stress-induced apoptosis. Antioxidants &Redox Signaling, 2003,5(5):609-620.
doi: 10.1089/152308603770310275 pmid: 14580317
[14]   Klaunig J E, Xu Y, Isenberg J S, et al. The role of oxidative stress in chemical carcinogenesis. Annual Review of Pharmacology & Toxicology, 1998,106(1):289-295.
[15]   Janion C. Some aspects of the SOS response system: a critical survey. Acta Biochimica Polonica, 2001,48(3):599-610.
pmid: 11833768
[16]   Rowe L A, Degtyareva N, Doetsch P W. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2008,45(8):1167-1177.
doi: 10.1016/j.freeradbiomed.2008.07.018 pmid: 18708137
[17]   Watanabe S, Kita A, Kobayashi K, et al. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proceedings of the National Academy of Sciences, 2008,105(11):4121-4126.
[18]   Gaudu P, Moon N, Weiss B. Regulation of the soxRS oxidative stress regulon: reversible oxidation of the Fe±S centers of SoxR in vivo. J Biol Chem, 1997,272(8):5082-5086.
pmid: 9030573
[19]   Park S J, Chung H Y, Lee J H. Rapid in vivo screening system for anti-oxidant activity using bacterial redox sensor strains. Journal of Applied Microbiology, 2010,108(4):1217-1225.
doi: 10.1111/j.1365-2672.2009.04514.x pmid: 19761460
[20]   邓名荣, 朱红惠, 郭俊. 转录因子SoxR的结构、调控机制及生理功能. 微生物学报, 2010,50(12):1575-1582.
pmid: 21365909
[20]   Deng M R, Zhu H H, Guo J. The structure, regulation mechanism and physiological function of transcription factor SoxR. Acta Microbiologica Sinica, 2010,50(12):1575-1582.
pmid: 21365909
[21]   HerreraLópez E J. Lipase and phospholipase biosensors: a review. Methods Mol Biol, 2012,861(30):525-543.
[22]   Touati D. Sensing and protecting against superoxide stress in Escherichia coli: how many ways are there to trigger SoxRS response. Redox Report, 2017,5(5):287-293.
doi: 10.1179/135100000101535825 pmid: 11145103
[23]   Dahl R H, Zhang F, Alonsogutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013,31(11):1039-1046.
pmid: 24142050
[24]   Behzadian F, Barjeste H, Hosseinkhani S, et al. Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Current Microbiology, 2011,62(2):690-696.
doi: 10.1007/s00284-010-9764-5 pmid: 20872219
[25]   郭书巧, 徐鹏, 倪万潮. 细菌的氧化应激及基因表达调控. 生物技术通报, 2008,4(3):8-11.
[25]   Guo S Q, Xu P, Ni W C. Oxidative stress in bacteria and regulation of gene expression. Biotechnology Bulletin, 2008,4(3):8-11.
[26]   Tang S Y, Cirino P C. Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie, 2011,50(5):1084-1086.
pmid: 21268200
[27]   Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology, 2007,19(2):238-245.
doi: 10.1016/j.ceb.2007.02.009 pmid: 17303408
[28]   Harrison J C, Haber J E. Surviving the breakup: the dna damage checkpoint. Annual Review of Genetics, 2006,40(1):209-235.
doi: 10.1146/annurev.genet.40.051206.105231
[29]   Dietrich J A, Shis D L, Alikhani A, et al. Transcription factor:based screens and synthetic selections for microbial small-molecule biosynthesis. Acs Synthetic Biology, 2013,2(1):47-58.
doi: 10.1021/sb300091d pmid: 23656325
[30]   Liu J, Ehmsen K T, Heyer W D, et al. Presynaptic filament dynamics in homologous recombination and DNA repair. Critical Reviews in Biochemistry and Molecular Biology, 2011,46(3):240-270.
doi: 10.3109/10409238.2011.576007
[31]   Tang S Y, Qian S, Akinterinwa O, et al. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013,135(27):10099-10103.
doi: 10.1021/ja402654z pmid: 23786422
[32]   Farmer W R, Liao J C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnology, 2000,18(5):533-537.
doi: 10.1038/75398 pmid: 10802621
[33]   Massa P E, Paniccia A, Monegal A, et al. Salmonella engineered to express CD 20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood, 2013,122(5):705-714.
doi: 10.1182/blood-2012-12-474098
[34]   Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnology and Bioengineering, 1977,19(10):1535-1547.
doi: 10.1002/bit.260191010 pmid: 901931
[35]   Bousse L. Whole cell biosensors. Sensors & Actuators B Chemical, 1996,34(1-3):270-275.
[36]   Saeidi N, Wong C K, Lo T M, et al. Engineering microbes to sense and eradicate pseudomonas aeruginosa, a human pathogen. Molecular Systems Biology, 2011,7(1):521-521.
doi: 10.1038/msb.2011.55
[37]   Waters C M, Bassler B L. Quorum sensing: cell-to-cell communication in bacteria. Cell and Developmental Biology, 2005,21(21):319-346.
doi: 10.1146/annurev.cellbio.21.012704.131001
[38]   Kobayashi H, Kaern M, Araki M, et al. Programmable cells: interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences, 2004,101(22):8414-8419.
[39]   Mono?ík R, Streansky M, ?turdík E. Biosensors-classification, characterization and new trends. Acta Chimica Slovaca, 2012,5(1):109-120.
doi: 10.2478/v10188-012-0017-z
[40]   Chen P T, Shaw J F, Chao Y P, et al. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in bacillus subtilis. Journal of Agricultural & Food Chemistry, 2010,58(9):5392-5399.
doi: 10.1021/jf100445a pmid: 20377228
[41]   Michener J K, Thodey K, Liang J C, et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metabolic Engineering, 2012,14(3):212-222.
doi: 10.1016/j.ymben.2011.09.004 pmid: 21946159
[42]   Gardner T S, Cantor C R, Collins J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000,403(6767):339.
doi: 10.1038/35002131 pmid: 10659857
[43]   Schoket B, Doty W A, Vincze I, et al. Increased sensitivity for determination of polycyclic aromatic hydrocarbon-DNA adducts in human DNA samples by dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA). Cancer Epidemiology Biomarkers & Prevention, 1993,2(4):349-353.
[44]   Feng F, Yin J, Song M, et al. Preparation, identification and analysis of stereoisomeric anti-benzo[a]pyrene diol epoxide-deoxyguanosine adducts using phenyl liquid chromatography with diode array, fluorescence and tandem mass spectrometry detection. Journal of Chromatography A, 2008,1183(1-2):119-128.
doi: 10.1016/j.chroma.2008.01.018 pmid: 18243229
[45]   宋道军, 李红, 余增亮. N+离子注入对不同辐射敏感性微生物超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性的影响 . 生物物理学报, 1998,2(14):325-330.
[45]   Song D J, Li H, Yu Z L. Effects of N+ ion implantation on the activities of superoxide dismutase (SOD), catalase(CAT) and peroxidase (POD) in different radiation-sensitive microorganisms . Acta Biophysica Sinica, 1998,2(14):325-330.
[46]   Santella R M. Immunological methods for detection of carcinogen-DNA damage in humans. Cancer Epidemiology Biomarkers & Prevention, 1999,8(3):733-739.
[47]   Liao V H C, Ou K L. Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environmental Toxicology and Chemistry, 2005,24(7):1624-1631.
doi: 10.1897/04-500r.1 pmid: 16050578
[48]   宋凯. 合成生物学导论. 第2版. 北京: 科学出版社, 2010.
[48]   Song K. Introdution to synthetic biology. 2nd ed. Beijing: Science Press, 2010.
[49]   Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: the LuxR - LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994,176(2):269-275.
doi: 10.1128/jb.176.2.269-275.1994 pmid: 8288518
[50]   Wellhausen R, Oye K A. Intellectual property and the commons in synthetic biology: strategies to facilitate an emerging technology. Conference on Science, Technology & Innovation Policy. IEEE, 2008.
[51]   Rutherford S T, Bassler B L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Technology// Science, Technology and Innovation Policy, 2007 Atlanta Conference on. IEEE, 2007.
[52]   Kotula J W, Kerns S J, Shaket L A, et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(13):4838-4843.
[53]   Tsao C Y, Hooshangi S, Wu H C, et al. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metabolic Engineering, 2010,12(12):291-297.
doi: 10.1016/j.ymben.2010.01.002
[54]   Chen Z, Lu M, Zhuang G, et al. Enhanced bacterial biosensor for fast and sensitive detection of oxidatively DNA damaging agents. Analytical Chemistry, 2011,83(9):3248-3251.
doi: 10.1021/ac200426x
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[3] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[4] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[5] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[6] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[7] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[8] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[9] WEN Guo-xia, HUANG Zi-hao, TAN Jun-jie, KAN Nai-peng, LING Jing-yi, ZHANG Xia, LIU Gang, CHEN Hui-peng. Construction of XylR-Pugene Lines in Escherichia coli to Detect 2,4,6-trinitrotoluene[J]. China Biotechnology, 2017, 37(7): 105-114.
[10] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[11] HU Yan-zhen, WEI Jun-ying, LUO Guang-ming. Research on Glutathione-related Signaling Pathway in Liver Diseases[J]. China Biotechnology, 2015, 35(10): 72-77.
[12] JIN Chao, LIU Jie, JI Jing, WANG Gang, CAO Hai-yan, WU Jiang. Overexpression of LcCHYB to Enhance the Tolerance to Oxidative Stress of Eustoma Grandiflorum[J]. China Biotechnology, 2015, 35(1): 27-33.
[13] GAO Hai-ling, JI Jing, WANG Gang, WU Guang-xia, RONG Fei, GUAN Chun-feng, JIN Chao. Expression Studies of Ascorbate Peroxidase from Lycium chinense Mill. in E.coli and Yeast[J]. China Biotechnology, 2014, 34(7): 24-29.
[14] WANG Yan-ling, FANG Jing, ZHANG Tian-zuo, LI Hao, LI Fei-fei, TAO Ming-zhen, WANG Xiao-hua, MAO Jian-ping. The Preliminary Anti-radiation Study on C57 Mice Irradiated by 8Gy γ Ray After Gavaged Acai Based Herbal Supplementary Blend and Noni Fruit Powder[J]. China Biotechnology, 2012, 32(04): 33-40.
[15] MA Pan, LIU Hong-tao, XU Qing-song, BAI Xue-fang, DU Yu-guang. Effects of Chitosan Oligosaccharides Attenuating Menadione-induced Injury in Macrophages[J]. China Biotechnology, 2011, 31(06): 18-21.