Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (5): 78-83    DOI: 10.13523/j.cb.1912002
    
Research Progress on Techniques for Separation, Purification of Bacteriophages
QIN Xu-ying,YANG Hong-jiang()
Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
Download: HTML   PDF(523KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacteriophage is widely used in many fields, so in the process of preparing phage, the different techniques or several techniques to obtain phage preparations with different purity to be used. The techniques commonly used to separate and purify phage are precipitation, filtration and centrifugation. In recent years, the application of chromatographic, field-flow fractionation techniques and electrophoresis techniques provides a new direction for obtaining phage preparations.



Key wordsBacteriophage      Chromatography      Field-flow fractionation      Dielectrophoresis     
Received: 01 December 2019      Published: 02 June 2020
ZTFLH:  Q815  
Corresponding Authors: Hong-jiang YANG     E-mail: hongjiangyang@tust.edu.cn
Cite this article:

QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages. China Biotechnology, 2020, 40(5): 78-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1912002     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I5/78

Fig.1 Principle of asymmetrical flow field-flow fractionation
Fig.2 Schematic representation of insulator-based dielectrophoresis channel
[1]   Keen E C . A century of phage research: Bacteriophages and the shaping of modern biology. Bioessays, 2015,37(1):6-9.
[2]   Ofir G, Sorek R . Contemporary phage biology: from classic models to new insights. Cell, 2018,172(6):1260-1270.
[3]   Danovaro R, Corinaldesi C, Dell'anno A , et al. Marine viruses and global climate change. FEMS Microbiol Rev, 2011,35(6):993-1034.
[4]   Després V R, Huffman J A, Burrows S M , et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B, 2012,64(1):1-58.
[5]   Anderson R E, Brazelton W J, Baross J A . The deep viriosphere: assessing theviral impact on microbial community dynamics in the deep subsurface. Rev Mineral Geochem, 2013,75(1):649-675.
[6]   Hankin E H . L'action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur, 1896,10:511-523.
[7]   d'Hérelle F . Sur un microbe invisible antagonistic des bacilles dysenteriques. Acad Sci, 1917,165:373-375.
[8]   Summers, W C . Felix d'Herelle and the origins of molecular biology. Journal of the History of New Haven and London, 1999,45(2):230.
[9]   Mills S, Shanahan F, Stanton C , et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes, 2013,4(1):4-16.
[10]   Lepage P, Leclerc M C, Joossens M , et al. A metagenomic insight into our gut's microbiome. Gut, 2013,62(1):146-158.
[11]   Ma Y F, You X Y, Mai G Q , et al. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome, 2018,6(1):24.
[12]   Chehoud C, Dryga A, Hwang Y , et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. MBio, 2016,7(2):e00322-16.
[13]   Ott S J, Waetzig G H, Rehman A , et al. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology, 2017,152(4):799-811.
[14]   Zuo T, H Wong S, Lam K , et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut Microbiota, 2018,67(4):634-643.
[15]   Council of Europe. European pharmacopoeia2.6.14 bacterial endotoxins. 5.0nd. Europe: EDQM Press, 2005: 161-168.
[16]   Food and Drug Administration FDA Alerts Health Care Professionals of Significant Safety Risks Associated with Cesium Chloride [Online]. Food and Drug Administration.[2018]. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/PharmacyCompounding/ucm614211.htm(accessed 26th March 2019).
[17]   Wolf M W, Reichl U . Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines, 2011,10(10):1451-1475.
doi: 10.1586/erv.11.111
[18]   Wilhelm S W, Weinbauer M G, Suttle C A . Manual of aquatic viral ecology. Waco, TX: ASLO, 2010: 166-181.
[19]   Trépanier P, Payment P, Trudel M . Concentration of human respiratory syncytial virus using ammonium sulfate, polyethylene glycol or hollow fiber ultrafiltration. J Virol Methods, 1981,3(4):201-211.
doi: 10.1016/0166-0934(81)90071-9
[20]   Kay B K, Winter J, McCafferty J . Phage display of peptides and prote-ins:a laboratory manual. San Diego: Academic Press, 1996: 38-42.
[21]   Subramanian S, Altaras G M, Chen J , et al. Pilot-scale adenovirus seed production through concurrent virus release and concentration by hollow fiber filtration. Biotechnol Prog, 2005,21(3):851-859.
[22]   Woo Y J, Zhang J C, Taylor M D , et al. One year transgene expression with adeno-associated virus cardiac gene transfer. Int J Cardiol, 2005,100(3):421-426.
[23]   Mbiguino A, Menezes J . Purification of human respiratory syncytial virus: superiority of sucrose gradient over percoll, renografin, and metrizamide gradients. J Virol Methods, 1991,31(2-3):161-170.
[24]   Peng H H, Wu S, Davis J J , et al. A rapid and efficient method for purification of recombinant adenovirus with arginine-glycine-aspartic acid-modified fibers. Anal Biochem, 2006,354(1):140-147.
[25]   Gias E, Nielsen S U, Morgan L A F , et al. Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J Virol Methods, 2008,147(2):328-332.
[26]   Trépanier P, Payment P, Trudel M . Concentration of human respiratory syncytial virus using ammonium sulfate, polyethylene glycol or hollow fiber ultrafiltration. J Virol Methods, 1981,3(4):201-211.
doi: 10.1016/0166-0934(81)90071-9
[27]   Segura M M, Kamen A, Trudel P , et al. A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol Bioeng, 2005,90(4):391-404.
[28]   Lara A R, Ramírez O T, Wunderlich M . Plasmid DNA production for therapeutic applications. Methods Mol Biol, 2012,824:271-303.
[29]   Wu Y, Simons J, Hooson S , et al. Protein and virus-like particle adsorption on perfusion chromatography media. J Chromatogr A, 2013,1297:96-105.
[30]   Yu M, Li Y, Zhang S , et al. Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: advantages of gigaporous media beyond enhanced binding capacity. J Chromatogr A, 2014,1331(1):69-79.
[31]   Burden C S, Jin J, Podgornik A , et al. A monolith purification process for virus-like particles from yeast homogenate. J Chromatogr B, 2012,880(1):82-89.
[32]   Trilisky E I, Lenhoff A M . Sorption processes in ionexchange chromatography of viruses. J Chromatogr A, 2007,1142(1):2-12.
[33]   Urthaler J, Schlegl R, Podgornik A , et al. Application of monoliths for plasmid DNA purification development and transfer to production. J Chromatogr A, 2005,1065(1):93-106.
[34]   Strancar A, Podgornik A, Barut M , et al. Short monolithic columns as stationary phases for biochromatography. Adv Biochem Eng Biotechnol, 2002,76(1):49-85.
[35]   Segura M M, Kamen A, Trudel P , et al. A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol Bioeng, 2005,90(4):391-404.
doi: 10.1002/(ISSN)1097-0290
[36]   Sain B, Erdei S . Bacteriophage purification by gel chromatography. Anal Biochem, 1981,110(1):128-130.
[37]   Zakharova M Y, Kozyr A V, Ignatova A N , et al. Purification of filamentous bacteriophage for phage display using size-exclusion chromatography. BioTechniques, 2005,38(2):194-198.
doi: 10.2144/05382BM04
[38]   Giddings J C, Yang F J, Myers M N . Flow-field-flow fractionation: a versatile new separation method. Science, 1976,193(4259):1244-1245.
[39]   Wahlund K G, Giddings J C . Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem, 1987,59(9):1332-1339.
[40]   Williams S K, Lee D . Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J Sep Sci, 2006,29(12):1720-1732.
[41]   Giddings J C, Ratanathanawongs S K, Moon M H . Field-flow fractionation: a versatile technology for particle characterization in the size range 10-3 to 102 micrometers . KONA Powder Part J, 1991,9:200-217.
[42]   Eskelin K, Lampi M, Meier F , et al. Asymmetric flow field flow fractionation methods for virus purification. J Chromatogr A, 2016,1469:108-119.
[43]   Eskelin K, Lampi M, Meier F , et al. Halophilic viruses with varying biochemical and biophysical properties are amenable to purification with asymmetrical flow field-flow fractionation. Extremophiles, 2017,21(6):1119-1132.
[44]   Lampi M, Oksanen H M, Meier F , et al. Asymmetrical flow field-flow fractionation in purification of an enveloped bacteriophage 6. J Chromatogr B Analyt Technol Biomed Life Sci, 2018,1095:251-257.
[45]   Somasundaram B, Chang C, Fan Y Y , et al. Characterizing enterovirus 71 and coxsackievirus A16 virus-like particles production in insect cells. Methods, 2016,95:38-45.
[46]   Chen Y, Zhang Y, Zhou Y , et al. Asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering for stability comparison of virus-like particles in different solution environments. Vaccine, 2016,34(27):3164-3170.
[47]   Wei Z, Mcevoy M, Razinkov V , et al. Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity. J Virol Methods, 2007,144(1-2):122-132.
[48]   Eskelin K, Poranen M M . Controlled disassembly and purification of functional viral subassemblies using asymmetrical flow field-flow fractionation (AF4). Viruses, 2018,10(11):579-592.
[49]   Liew M W, Chuan Y P, Middelberg A P . High-yield and scalable cell-free assembly of virus-like particles by dilution. Biochem Eng J, 2012,67:88-96.
doi: 10.1016/j.bej.2012.05.007
[50]   Chuan Y P, Fan Y Y, Lua L , et al. Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng, 2008,99(6):1425-1433.
[51]   Whitesides G M . The origins and the future of microfluidics. Nature, 2006,442(7101):368-373.
[52]   Jones P V, Salmon G L, Ros A . Continuous separation of DNA molecules by size using insulator-based dielectrophoresis. Anal Chem, 2017,89(3):1531-1539.
doi: 10.1021/acs.analchem.6b03369
[53]   Ding J, Lawrence R M, Jones P V , et al. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst, 2016,141(6):1997-2008.
[54]   Romero-Creel M F, Goodrich E, Polniak D V , et al. Assessment of sub-micron particles by exploiting charge differences with dielectrophoresis. Micromachines, 2017,8(8):239.
doi: 10.3390/mi8080239
[55]   Polniak D V, Goodrich E, Hill N , et al. Separating large microscale particles by exploiting charge differences with dielectrophoresis. J Chromatogr A, 2018,1545:84-92.
[56]   Grom F, Kentsch J, Müller T , et al. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis, 2006,27(7):1386-1393.
doi: 10.1002/(ISSN)1522-2683
[57]   Voldman J . Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng, 2006,8:425-454.
[58]   Madiyar F R, Syed L U, Culbertson C T , et al. Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays. Electrophoresis, 2013,34(7):1123-1130.
[59]   Sonnenberg A, Marciniak J Y, McCanna J , et al. Dielectrophoretic isolation and detection of cfc-DNA nanoparticulate biomarkers and virus from blood. Electrophoresis, 2013,34(7):1076-1084.
[60]   Coll De Pe?a A, Mohd Redzuan N H, Abajorga M K , et al. Analysis of bacteriophages with insulator-based dielectrophoresis. Micromachines, 2019,10(7):450.
[61]   梁莉, 杨洪江, 金鑫 . 鲍曼不动杆菌烈性噬菌体的分离与纯化. 生物学杂志, 2010,27(4):88-93.
[61]   Liang L, Yang H J, Jin X . Purification of Acinetobacter baumannii bacteriophage. Journal of Biology. 2010,27(4):88-93.
[1] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[2] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[3] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[4] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[5] ZHAO Jian-min,ZHANG Si-yuan. Review of Patented Bacteriophage Treatment Technology for Drug-Resistant Bacteria Infection[J]. China Biotechnology, 2020, 40(10): 104-111.
[6] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[7] Da-wei FU,Ying-ying SUN,wei XU. Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI[J]. China Biotechnology, 2019, 39(3): 21-28.
[8] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[9] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[10] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.
[11] Qi ZHANG,Lin YAO,Yan-hua JIANG,Feng-ling LI,Yuan ZHANG,Dong-qin XU,Wen-jia ZHU,Ying-ying GUO,Lian-zhu WANG,Yu-xiu ZHAI. Development of Armored RNA Reference Material of Norovirus Based on Qbeta Bacteriophage[J]. China Biotechnology, 2018, 38(1): 42-50.
[12] XIA Qi-yu, LI Mei-ying, YANG Xiao-liang, XIAO Su-sheng, HE Ping-ping, GUO An-ping. Immunochromatography Test Strip and Its Applications in Detection of Genetically Modified Organisms[J]. China Biotechnology, 2017, 37(2): 101-110.
[13] XUE Ling, LIU Jiang-ning, ZHANG Yao, ZHANG Chun, WANG Qi, QIN Chuan, LIU Yong-dong, SU Zhi-guo. Affinity Purification of Enterovirus 71 Fused Multi-Epitope Protein Antigen and Assembling It as Virus-like Particles in Vitro[J]. China Biotechnology, 2016, 36(7): 34-40.
[14] MENG Guo-ji, DENG Yi-xi, LI Le, LUO Hao-hui, YU Yu-gen. Promotion in ProteinA Chromatography of WLB303 Monoclonal Antibody by Using Dual Flowrate to Load Sample[J]. China Biotechnology, 2016, 36(6): 65-75.
[15] GAO Wen, GAO Xiang-dong, LU Xiao-dong, XU Chen. Liquid Chromatographic Refolding of Proteins and Process Evaluation[J]. China Biotechnology, 2015, 35(3): 84-91.