Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (11): 76-82    DOI: 10.13523/j.cb.20161111
    
Research Progress of RNA Editing in Mammal Acting on Non-coding RNA
LUO Jia1, SHEN Lin yuan1, LI Qiang2, LI Xue wei1, ZHANG Shun hua1, ZHU Li1
1. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
2. Sichuan Livestock Master Station, Chengdu 610041, China
Download: HTML   PDF(451KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

RNA editing is a dynamic mechanism for gene regulation caused by the alteration of the primary RNA transcripts sequence. Adenosine deaminase (adenosine deaminases acting on RNA, ADAR) involved in RNA editing, binded double-stranded regions and deaminated adenosine (A) into inosine (I), which in turn is interpreted by the translation and splicing as guanosine (G). A-to-I (adenosine-to-inosine) RNA editing, which is catalyzed by members of the adenosine deaminase acting on RNA (ADARs) family of enzymes, is the most common post-transcriptional modification in humans. In recent years, this modification has been discovered not only in coding RNA but also in noncoding RNA (ncRNA), such as microRNA, small interfering RNA, transfer RNA, and long non-coding RNA. This may have several consequences, such as creation or disruption of microRNA/mRNA binding sites, and thus affect the biogenesis, stability, and target recognition properties of ncRNA. Despite the enormous efforts made so far, the real biological function of this phenomenon, as well as the features of the ADAR substrate, in particular in non-coding RNAs, has still not been fully understood. The current knowledge of RNA editing on ncRNA molecules and provide a few examples of computational approaches to elucidate its biological function were focused orl.



Key wordsncRNA      RNA-seq      microRNA      RNA editing     
Received: 28 April 2016      Published: 25 November 2016
ZTFLH:  Q522  
Cite this article:

LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA. China Biotechnology, 2016, 36(11): 76-82.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161111     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I11/76

[1] Cech T R, Steitz J A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1):77-94.
[2] Galeano F, Tomaselli S, Locatelli F, et al. A-to-I RNA editing:The "ADAR" side of human cancer. Seminars in Cell & Developmental Biology, 2012,23(3):244-250.
[3] Tomaselli S, Locatelli F, Gallo A. The RNA editing enzymes ADARs:mechanism of action and human disease. Cell and Tissue Research, 2014, 356(3):527-532.
[4] Kiran A, Baranov P V. DARNED:a DAtabase of RNA editing in humans. Bioinformatics, 2010, 26(14):1772-1776.
[5] Kiran A M, O'Mahony J J, Sanjeev K, et al. Darned in 2013:inclusion of model organisms and linking with Wikipedia. Nucleic Acids Research, 2013, 41(D1):D258-D261.
[6] Ramaswami G, Li J B. RADAR:a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Research, 2013,25(10):996.
[7] Benne R, Van Den Burg J, Brakenhoff JP et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell, 1986, 46(6):819-826.
[8] Hensgens L A, Brakenhoff J, De Vries B F, et al. The sequence of the gene for cytochrome c oxidase subunit I, a frameshift containing gene for cytochrome c oxidase subunit Ⅱ and seven unassigned reading frames in Trypanosoma brucei mitochondrial maxi-cirle DNA. Nucleic Acids Research, 1984, 12(19):7327-7344.
[9] Gott J, Visomirski L, Hunter J. Substitutional and insertional RNA editing of the cytochrome c oxidase subunit 1 mRNA of Physarum polycephalum. Journal of Biological Chemistry, 1993, 268(34):25483-25486.
[10] Wang L, Kimble J, Wickens M. Tissue-specific modification of gld-2 mRNA in C. elegans:Likely C-to-U editing. Rna, 2004, 10(9):1444-1448.
[11] Yang Y, Lv J, Gui B et al. A-to-I RNA editing alters less-conserved residues of highly conserved coding regions:implications for dual functions in evolution. RNA, 2008, 14(8):1516-1525.
[12] Petschek J P, Mermer M J, Scheckelhoff M R, et al. RNA editing in drosophila 4f-rnp gene nuclear transcripts by multiple A-to-G conversions. Journal of Molecular Biology, 1996, 259(5):885-890.
[13] Chaw S M, Shih A C C, Wang D, et al. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution, 2008, 25(3):603-615.
[14] Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annual Review of Biochemistry, 2010, 79(10):321.
[15] Rueter S M, Dawson T R, Emeson R B. Regulation of alternative splicing by RNA editing. Nature, 1999, 399(6731):75-80.
[16] Jepson J E, Reenan R A. RNA editing in regulating gene expression in the brain. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2008, 1779(8):459-470.
[17] Nishikura K. Editor meets silencer:crosstalk between RNA editing and RNA interference. Nature Reviews Molecular Cell Biology, 2006, 7(12):919-931.
[18] Borchert G M, Gilmore B L, Spengler R M, et al. Adenosine deamination in human transcripts generates novel microRNA binding sites. Human Molecular Genetics, 2009, 18(24):4801-4807.
[19] Su A, Randau L. A-to-I and C-to-U editing within transfer RNAs. Biochemistry (Moscow), 2011, 76(8):932-937.
[20] Kawahara Y, Megraw M, Kreider E, et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Research, 2008, 36(16):5270-5280.
[21] Mitra S A, Mitra A P, Triche T J. A central role for long non-coding RNA in cancer. Frontiers in Genetics, 2012,3(17):70.
[22] Blow M J, Grocock R J, van Dongen S, et al. RNA editing of human microRNAs. Genome Biology, 2006, 7(4):R27.
[23] Yang W, Chendrimada T P, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Structural & Molecular biology, 2006, 13(1):13-21.
[24] Kawahara Y, Zinshteyn B, Sethupathy P, et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 2007, 315(5815):1137-1140.
[25] Wu D, Lamm A T, Fire A Z. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nature Structural & Molecular Biology, 2011, 18(10):1094-1101.
[26] Alon S, Mor E, Vigneault F, et al. Systematic identification of edited microRNAs in the human brain. Genome Research, 2012, 22(8):1533-1540.
[27] Carmi S, Borukhov I, Levanon E Y. Identification of widespread ultra-edited human RNAs. PLoS Genetics, 2011, 7(10):e1002317.
[28] Bazak L, Levanon E Y, Eisenberg E. Genome-wide analysis of Alu editability. Nucleic Acids Research, 2014, 42(11):6876-6884.
[29] Clutterbuck D R, Leroy A, O'Connell M, et al. A bioinformatic screen for novel A-I RNA editing sites reveals recoding editing in BC10. Bioinformatics, 2005, 21(11):2590-2595.
[30] Hoopengardner B, Bhalla T, Staber C, et al. Nervous system targets of RNA editing identified by comparative genomics. Science, 2003, 301(5634):832-836.
[31] Ramaswami G, Zhang R, Piskol R, et al. Identifying RNA editing sites using RNA sequencing data alone. Nature Methods, 2013, 10(2):128-132.
[32] Higuchi M, Maas S, Single F N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature, 2000, 406(6791):78-81.
[33] Wang Q, Khillan J, Gadue P, et al. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science, 2000, 290(5497):1765-1768.
[34] Maas S, Patt S, Schrey M, et al. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proceedings of the National Academy of Sciences, 2001, 98(25):14687-14692.
[35] Kawahara Y, Ito K, Sun H, et al. Glutamate receptors:RNA editing and death of motor neurons. Nature, 2004, 427(6977):801-801.
[36] Morse D P, Bass B L. Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly (A)+ RNA. Proceedings of the National Academy of Sciences, 1999, 96(11):6048-6053.
[37] Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS biology, 2004, 2(12):e391.
[38] Kim D D, Kim T T, Walsh T, et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Research, 2004, 14(9):1719-1725.
[39] Levanon E Y, Eisenberg E, Yelin R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnology, 2004, 22(8):1001-1005.
[40] Eggington J M, Greene T, Bass B L. Predicting sites of ADAR editing in double-stranded RNA. Nature Communications, 2011, 2(5):319.
[41] Sakurai M, Yano T, Kawabata H, et al. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nature Chemical Biology, 2010, 6(10):733-740.
[42] Sakurai M, Ueda H, Yano T, et al. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Research, 2014, 24(3):522-534.
[43] Li J B, Levanon E Y, Yoon J K, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science, 2009, 324(5931):1210-1213.
[44] Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Research, 2014, 24(3):365-376.
[45] Ju Y S, Kim J I, Kim S, et al. Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nature Genetics, 2011, 43(8):745-752.
[46] Bahn J H, Lee J H, Li G, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Research, 2012, 22(1):142-150.
[47] Picardi E, Gallo A, Galeano F, et al. A novel computational strategy to identify A-to-I RNA editing sites by RNA-Seq data:de novo detection in human spinal cord tissue. PloS One, 2012, 7(9):e44184.
[48] Park E, Williams B, Wold B J, et al. RNA editing in the human ENCODE RNA-seq data. Genome Research, 2012, 22(9):1626-1633.
[49] Zhu S, Xiang J-F, Chen T, et al. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. BMC Genomics, 2013, 14(1):206.
[50] Solomon O, Bazak L, Levanon E Y, et al. Characterizing of functional human coding RNA editing from evolutionary, structural, and dynamic perspectives. Proteins:Structure, Function, and Bioinformatics, 2014, 82(11):3117-3131.
[51] Porath H T, Carmi S, Levanon E Y. A genome-wide map of hyper-edited RNA reveals numerous new sites. Nature Communications, 2014, 5(10):4726.
[52] de Hoon M J, Taft R J, Hashimoto T, et al. Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Research, 2010, 20(2):257-264.
[53] Alon S, Eisenberg E. Identifying RNA editing sites in miRNAs by deep sequencing. Deep Sequencing Data Analysis, 2013,18(6):159-170.
[54] Peng Z, Cheng Y, Tan BC M, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nature Biotechnology, 2012, 30(3):253-260.
[55] Picardi E, D'Antonio M, Carrabino D, et al. ExpEdit:a webserver to explore human RNA editing in RNA-Seq experiments. Bioinformatics, 2011, 27(9):1311-1312.
[56] Wahlstedt H, Daniel C, Enster M, et al. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Research, 2009, 19(6):978-986.
[57] LUCIANO D J, MIRSKY H, VENDETTI N J, et al. RNA editing of a miRNA precursor. Rna, 2004, 10(8):1174-1177.
[58] Kume H, Hino K, Galipon J, et al. A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Research, 2014,23(6):662.
[59] Yang W, Wang Q, Howell K L, et al. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. Journal of Biological Chemistry, 2005, 280(5):3946-3953.
[60] Ota H, Sakurai M, Gupta R, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell, 2013, 153(3):575-589.
[61] Nishikura K, Sakurai M, Ariyoshi K, et al. Antagonistic and stimulative roles of ADAR1 in RNA silencing. RNA Biology, 2013, 10(8):1240-1247.
[62] Rinn J L, Chang H Y. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 2012,12(10):81.
[63] Mercer T R, Mattick J S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 2013, 20(3):300-307.
[64] Hellwig S, Bass B L. A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proceedings of the National Academy of Sciences, 2008, 105(35):12897-12902.
[65] Geisler S, Coller J. RNA in unexpected places:long non-coding RNA functions in diverse cellular contexts. Nature Reviews Molecular Cell Biology, 2013, 14(11):699-712.
[66] Torres A G, Piñeyro D, Filonava L, et al. A-to-I editing on tRNAs:Biochemical, biological and evolutionary implications. FEBS Letters, 2014, 588(23):4279-4286.

[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[3] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[4] WANG Ke-ru,ZHU Hong-liang. Functions of RNA Editing Factors and Its Mechanisms in Plant Organelles[J]. China Biotechnology, 2020, 40(3): 125-131.
[5] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[6] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[7] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[8] Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG. Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation[J]. China Biotechnology, 2018, 38(5): 1-9.
[9] DU Jing-jing, TAN Zhen-dong, LIU Chen-dong, WU Xiao-qiao, ZHANG Pei-wen, ZHANG Shun-hua, ZHU Li. Research Progress of Long Non-coding RNAs[J]. China Biotechnology, 2016, 36(9): 59-74.
[10] LI Ran, WANG Tian, ZHU Hong-liang. Biological Function and Research Methods of Long Noncoding RNA[J]. China Biotechnology, 2015, 35(9): 66-70.
[11] XIN Jing, XU Yin-sheng, ZHANG Fang, SHENG Wang. The Function and Mechanism of MicroRNA-124 in Human Cervical Cancer[J]. China Biotechnology, 2015, 35(10): 13-19.
[12] MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin. DNA Methylation and microRNAs[J]. China Biotechnology, 2014, 34(8): 81-87.
[13] MAN Chao-lai, YANG Mei-ling. Research Progress in Circulating MicroRNAs of Body Fluid[J]. China Biotechnology, 2014, 34(2): 104-108.
[14] LOU Liang-liang, ZHU Yun-feng. Long Noncoding RNA and Its Relationship with Cancer[J]. China Biotechnology, 2013, 33(7): 82-89.
[15] MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju. Research Progress of Genetic Adjuvant[J]. China Biotechnology, 2013, 33(7): 112-117.