Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 8-16    DOI: 10.13523/j.cb.2012039
    
Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression
CHEN Yu-qiong1,2,TAN Wen-hua2,LIU Hai-feng1,CHEN Gen1,2,**()
1 The First People’s Hospital of Chenzhou, Chenzhou 423000, China
2 Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
Download: HTML   PDF(31749KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aim: To investigate the effect of miR-29a on lipopolysaccharide-induced injury in human pulmonary microvascular endothelial cells and its potential mechanism. Methods: The LPS-induced HPMVECs injury model was constructed. The expression level of miR-29a was detected by RT-qPCR. The concentration of LDH was measured by ELISA. MTT assay was used to detect the cell proliferation. The flow cytometry was applied to determine the HPMVECs apoptosis. The protein levels of PTEN, p-Akt, Akt, p-FOXO3a, FOXO3a and Bim were determined by Western blot. The targeting relationship between miR-29a and PTEN was predicted by Microcosm, starBase, Pictar, TargetScan and confirmed by luciferase test. Results: LPS treatment of HPMVECs significantly reduced the expression level of miR-29a and cell viability,induced the increase of LDH release amount and cell apoptic rate, upregulated the expression of PTEN and Bim protein, and down regulated the expression of p-Akt/Akt and p-FOXO3a/FOXO3a (P<0.05). Overexpression of miR-29a reversed the injury of LPS to HPMVECs. Dual luciferase reporter gene assay confirmed that PTEN was a negative regulatory target gene of miR-29a. The protein expression of PTEN was significantly down regulated by miR-29a mimics, and up-regulated by miR-29a inhibitors(P<0.05). However, the expression level of PTEN mRNA had no statistically significant difference (P>0.05). Conclusion: Overexpression of miR-29a, which targets inhibition of PTEN protein expression, protects against LPS-induced HUVECs injury by activating the Akt/FOXO3a/Bim pathway.



Key wordsMicroRNA-29a      Lipopolysaccharide      Human pulmonary microvascular endothelial cells      PTEN     
Received: 22 December 2020      Published: 01 June 2021
ZTFLH:  R563.9  
Corresponding Authors: Gen CHEN     E-mail: myth3878@aliyun.com
Cite this article:

CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression. China Biotechnology, 2021, 41(5): 8-16.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2012039     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/8

基因名称 引物序列
GAPDH F:5'-GGAGCGAGATCCCTCCAAAAT-3'
R:5'-GGCTGTTGTCATACTTCTCATGG-3'
PTEN F:5'-CGACGGGAAGACAAGACAAGTT-3'
R:5'-GCTAGCCTCTGGATTTGACG-3'
U6 F:5'-GCTTCGGCAGCACATATACTAAAAT-3'
R:5'-CGCTTCACGAATTTGCGTGTCAT-3'
miR-29a F:5'-GACTCGTAGCACCATCTG-3'
R:5'-GTGCAGGGTCCGAGGTAT-3'
Table 1 Primer synthesis sequence
Fig.1 Effect of LPS treatment on the expression of miR-29a and the LDH release in HPMVECs (a) Effect of LPS on miR-29a expression in HPMVECs (b) Effect of LPS on LDH release in HPMVECs * P<0.05, compared with control group ( x±s, n = 3)
Fig.2 Overexpression of miR-29a reversed LPS-damaged HPMVECs (a) The expression of miR-29a in different experimental groups (b) The proliferation activity of PMVECs in different experimental groups (c) LDH release rate of HPMVECs in different experimental groups (d) Statistical results of HPMVECs apoptosis rate in different experimental groups (e) Cell apoptosis was measured by flow cytometry * P<0.05, compared with control group;# P<0.05, compared with LPS + miR-NC (x±s, n = 3)
Fig.3 Verification of the targeting relationship between miR-29a and PTEN (a) Venn diagram of the results from the gene target prediction algorithms (b) List of the 14 predicted target genes for miR-29a (c) The target binding sites of miR-29a and PTEN (d) The results of luciferase assay (e) The results of PTEN protein expression (f) The results of PTEN mRNA expression * P<0.01, compared with miR-NC group; # P<0.01, compared with anti-miR-NC group (x±s, n=3)
Fig.4 Effects of miR-29a mimics on PTEN/Akt/FOXO3a/Bim pathway in LPS-treated HPMVECs Cell lysates were collected and analyzed by western blotting assay ( a ). The ratio of p-Akt/Akt ( b ), p-FOXO3a/FOXO3a ( c ), and the expression of Bim( d ) were quantified. GAPDH was used as loading control * P<0.05, compared with control group; # P<0.05, compared with LPS + miR-NC ( x±s, n=3)
[1]   周晓光, 洪慧. 新生儿急性呼吸窘迫综合征的治疗进展. 中华实用儿科临床杂志, 2017,32(2):81-84.
[1]   Zhou X G, Hong H. Advances in the treatment of neonatal acute respiratory distress syndrome. Chinese Journal of Applied Clinical Pediatrics, 2017,32(2):81-84.
[2]   江苏省新生儿ARDS研究协作组. 基于“柏林定义”的新生儿急性呼吸窘迫综合征临床流行病学调查研究. 中华新生儿科杂志(中英文), 2018,33(5):339-343.
[2]   Jiangsu Province Neonatal ARDS Research Group. A prospective, multi-center epidemiological study in neonates with acute respiratory distress syndrome based on the Berlin definition. Chinese Journal of Neonatology, 2018,33(5):339-343.
[3]   de Luca D, van Kaam A H, Tingay D G, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. The Lancet Respiratory Medicine, 2017,5(8):657-666.
doi: 10.1016/S2213-2600(17)30214-X
[4]   Herwig M C, Tsokos M, Hermanns M I, et al. Vascular endothelial cadherin expression in lung specimens of patients with sepsis-induced acute respiratory distress syndrome and endothelial cell cultures. Pathobiology, 2013,80(5):245-251.
doi: 10.1159/000347062
[5]   王晓丽, 梅花, 刘春枝. 微小RNAs与新生儿急性呼吸窘迫综合征的研究进展. 中华围产医学杂志, 2019,22(7):495-499.
[5]   Wang X L, Mei H, Liu C Z. Progress on microRNAs and neonatal acute respiratory distress syndrome. Chinese Journal of Perinatal Medicine, 2019,22(7):495-499.
[6]   Wong J J, Quek B H, Lee J H. Establishing the entity of neonatal acute respiratory distress syndrome. Journal of Thoracic Disease, 2017,9(11):4244-4247.
doi: 10.21037/jtd
[7]   Kalogianni D P, Kalligosfyri P M, Kyriakou I K, et al. Advances in microRNA analysis. Analytical and Bioanalytical Chemistry, 2018,410(3):695-713.
doi: 10.1007/s00216-017-0632-z pmid: 29032457
[8]   Zheng Y, Liu S Q, Sun Q, et al. Plasma microRNAs levels are different between pulmonary and extrapulmonary ARDS patients: a clinical observational study. Annals of Intensive Care, 2018,8(1):1-13.
doi: 10.1186/s13613-017-0346-6
[9]   陈丽, 吴本清, 陈文清, 等. microR-146a、microR-29a在新生大鼠急性肺损伤中的动态表达. 中华实用儿科临床杂志, 2014,29(22):1747-1750.
[9]   Chen L, Wu B Q, Chen W Q, et al. Dynamic expression changes of microR-146a and microR-29a in neonatal rats with acute lung injury. Chinese Journal of Applied Clinical Pediatrics, 2014,29(22):1747-1750.
[10]   Zhang F Y, Yang N, Rao Y F, et al. Profiling of miRNAs in neonatal cloned bovines with collapsed lungs and respiratory distress. Reproduction in Domestic Animals, 2018,53(2):550-555.
doi: 10.1111/rda.2018.53.issue-2
[11]   Zhao H W, Liu H, Liu L Y, et al. Analysis of microRNA expression profiling during paraquat-induced injury of murine lung alveolar epithelial cells. The Journal of Toxicological Sciences, 2020,45(8):423-434.
doi: 10.2131/jts.45.423
[12]   Zheng F, Xiao F, Yuan Q H, et al. Penehyclidine hydrochloride decreases pulmonary microvascular endothelial inflammatory injury through a beta-arrestin-1-dependent mechanism. Inflammation, 2018,41(5):1610-1620.
doi: 10.1007/s10753-018-0804-9 pmid: 29766401
[13]   Shao M, Tang S T, Liu B, et al. Rac1 mediates HMGB1-induced hyperpermeability in pulmonary microvascular endothelial cells via MAPK signal transduction. Molecular Medicine Reports, 2016,13(1):529-535.
doi: 10.3892/mmr.2015.4521 pmid: 26549372
[14]   Nickols J, Obiako B, Ramila K C, et al. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10. American Journal of Physiology Lung Cellular and Molecular Physiology, 2015,309(12):L1430-L1437.
doi: 10.1152/ajplung.00067.2015
[15]   Franke R P, Fuhrmann R, Mrowietz C, et al. Reduced diagnostic value of lactate dehydrogenase (LDH) in the presence of radiographic contrast media. Clinical Hemorheology and Microcirculation, 2010,45(2-4):123-130.
doi: 10.3233/CH-2010-1290 pmid: 20675892
[16]   Zhang D, Zhou J, Ye L C, et al. Autophagy maintains the integrity of endothelial barrier in LPS-induced lung injury. Journal of Cellular Physiology, 2018,233(1):688-698.
doi: 10.1002/jcp.25928 pmid: 28328069
[17]   Restin T, Kajdi M E, Schläpfer M, et al. Sevoflurane protects rat brain endothelial barrier structure and function after hypoxia-reoxygenation injury. PLoS One, 2017,12(10):e0184973.
doi: 10.1371/journal.pone.0184973
[18]   Huang Z G, Li N, Shan Y, et al. Hsa-miRNA-29a protects against high glucose-induced damage in human umbilical vein endothelial cells. Journal of Cellular Biochemistry, 2019,120(4):5860-5868.
doi: 10.1002/jcb.v120.4
[19]   Zhang Y, Li Y H, Liu C, et al. miR-29a regulates vascular neointimal hyperplasia by targeting YY1. Cell Proliferation, 2017,50(3):e12322. DOI: 10.1111/cpr.12322.
doi: 10.1111/cpr.2017.50.issue-3
[20]   Liu S, Zhang X M, Hu C M, et al. miR-29a inhibits human retinoblastoma progression by targeting STAT3. Oncology Reports, 2018,39(2):739-746.
[21]   Jiang T C, Sui D M, You D, et al. MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2. Cell Cycle, 2018,17(10):1268-1278.
doi: 10.1080/15384101.2018.1475829
[22]   Hopkins B D, Parsons R E. Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy. Clinical Cancer Research, 2014,20(21):5379-5383.
doi: 10.1158/1078-0432.CCR-13-2661
[23]   Shi J Y, Chen C, Xu X, et al. miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiologica (Oxford, England), 2019,227(2):e13323.
[24]   王晓景, 张明星, 陈小亮. 沉默PTEN基因抑制H2O2诱导的大鼠心肌细胞损伤. 基础医学与临床, 2019,39(5):705-709.
[24]   Wang X J, Zhang M X, Chen X L. Silencing PTEN gene inhibits cardiomyocyte injury induced by H2O2 in rats. Basic & Clinical Medicine, 2019,39(5):705-709.
[25]   Haeusler R A, Hartil K, Vaitheesvaran B, et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nature Communications, 2014,5:5190.
doi: 10.1038/ncomms6190 pmid: 25307742
[26]   Chen Q, Chen X S, Han C H, et al. FGF-2 transcriptionally down-regulates the expression of BNIP3L via PI3K/Akt/FoxO3a signaling and inhibits necrosis and mitochondrial dysfunction induced by high concentrations of hydrogen peroxide in H9c2 cells. Cellular Physiology and Biochemistry, 2016,40(6):1678-1691.
doi: 10.1159/000453217
[27]   Manning B D, Cantley L C. AKT/PKB signaling: navigating downstream. Cell, 2007,129(7):1261-1274.
doi: 10.1016/j.cell.2007.06.009
[28]   Juhasz B, Thirunavukkarasu M, Pant R, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. American Journal of Physiology Heart and Circulatory Physiology, 2008,294(3):H1365-H1370.
doi: 10.1152/ajpheart.01005.2007
[29]   Gilley J, Coffer P J, Ham J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. Journal of Cell Biology, 2003,162(4):613-622.
[30]   Strasser A, Puthalakath H, Bouillet P, et al. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Annals of the New York Academy of Sciences, 2000,917:541-548.
doi: 10.1111/(ISSN)1749-6632
[1] LI Rong-qing,QUAN Chun-shan,ZHANG Li-ying,LIU Jia-lu,ZHANG Xiang,SHANG Fei. Progress in the Synthesis of Artificial Antigen[J]. China Biotechnology, 2018, 38(12): 65-75.
[2] LI Hong-chang, YUAN Lin, ZHANG Ling-qiang . Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN[J]. China Biotechnology, 2015, 35(8): 1-8.
[3] HUANG Chen, WANG Jia-rong, YANG Ji-cheng, SHENG Wei-hua, MIAO Jing-cheng. The Inhibition of Ad. RGD-ING4-PTEN on MEG01 Human Leukemia Cell[J]. China Biotechnology, 2014, 34(3): 9-17.
[4] CHENG Zhi-yong, LIANG Wen-tong, WANG Su-yun, YAN Xiao-yan, LI Hua, WANG Bao-yan, TIAN He, WEI Yu-tao, LU Xi. Mechanism of PTEN/NF-κB/Caspase Pathway on Adriamycin Resistance Reversal in K562/ADM Cells[J]. China Biotechnology, 2013, 33(3): 54-60.
[5] GONG Pu-sheng, ZHANG Jian-liang, FU Yue-jiao, JIA Huan-zhen, ZHAO Chun-li, LU Ling-ling, DUAN Chun-li, YANG Hui. Overexpression of PINK1 in C57BL/6 Mice Striatum May Alleviate Injury Caused by Rotenone[J]. China Biotechnology, 2012, 32(02): 33-38.
[6] LI Beng, DENG Sheng-Liang, XU Hong-Xia, YANG Shu-Meng. Screening and Affinity Maturation of Hapten-specific Antibody[J]. China Biotechnology, 2010, 30(02): 105-108.
[7] . Natural Anti-infectious Molecule: Bactericidal/ permeability- increasing Protein[J]. China Biotechnology, 2006, 26(07): 94-98.