Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (5): 1-9    DOI: 10.13523/j.cb.20180501
    
Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation
Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG()
Department of Immunology, State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology and Institute of Medical Research, Wuhan University School of Medicine,Wuhan 430071, China
Download: HTML   PDF(1022KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To screen for differentially lncRNAs expression profile and predict their functional roles in the macrophage after Mycobacterium tuberculosis (M.tb) stimulation. Firstly, microarray and bioinformatics analysis of lncRNA and mRNA expression profiles in RAW264.7 macrophage after stimulation with M.tb for 24h.Then, 16 differentially expressed lncRNAs from microarray analysis were further verified by RT-qPCR using H37Rv infected macrophages and mouse model. The results shown that the expression levels of 4 730 lncRNAs was up-regulated, and the expression levels of 9 558 lncRNAs was down-regulated. 16 differentially expressed lncRNAs from microarray screening were associated with protein coding genes in adjacent locations. The mRNA function annotation analysis revealed that the mRNAs of differential expression were mainly concentrated in the biochemical process of transcriptional regulation, phosphorylation, apoptosis and MAPK signaling pathway which participating in the biochemical process of anti-tuberculosis. The expression trend of 4 lncRNAs in the iH37Rv stimulated RAW264.7 and mouse infection model was vertified as the same in both microarray and RT-qPCR analysis. Three of these 4 lncRNAs was up-regulated and one of them was down-regulated.The abnormal expression of lncRNAs may provide clues to the dysfunction of macrophages with M.tb infection, and further research will focus on the investigation of the function and regulation mechanism of lncRNA in M.tb infected macrophage.



Key wordsMycobacterium tuberculosis (M.tb)      Macrophage      Long non-coding RNA (lncRNA)      mRNA      Microarray analysis     
Received: 19 January 2018      Published: 05 June 2018
ZTFLH:  Q819  
Corresponding Authors: Xiao-lian ZHANG     E-mail: zhangxiaolian@whu.edu.cn
Cite this article:

Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG. Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation. China Biotechnology, 2018, 38(5): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180501     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I5/1

Number ACC.No.1) Sense-primer(5'-3') Anti-sense-primer(5'-3')
1 FR394054 TGTTTATCTGTTTGGGTTTG CCTGGCATCAAATAACCT
2 FR327109 CACTAAAGCATAAAATGAAAGG ACATGCAGGCAAAACAGC
3 FR155939 GATGGGAACGCCGAGTAAA CCTGGAAGGACATTGGGT
4 FR009074 TATCAGGTGGTAGCAGGAA TGTGAAGTTGGGATGGTG
5 FR321982 GGAGGCAGCAGAACACCA AACAGGGACAGCCAGAGT
6 FR245513 TCCTAGTAAAAATCCCCTAA TTTGCTTGGATAAAGGCAT
7 FR009059 AAGCAAAGACAGGTGGAT GGAGAAAGTTCAAGAGGC
8 n291603 GACTGCTGCGTGTCACCTAA CCCTGCTGTCAAAGACCTCC
9 chr4:3437474-3438228 GGACTTTCCAATGTGACTAT ATATGTAGGGGTATTGAACC
10 chr19:5834117-5835940 ACACTATCCTTTGAATCTCG GTCAGGTTAGGTTAAGCCAC
11 chr19:5795690-5797464 CTCTGGCCCCTTGAATAGAT GCTGTGCTGCCTTAGGTAAA
12 chr19:5798135-5800557 TTTCGTTTGCCTCAGACAGG AGCACATAATGATCCCTTTC
13 chr8:19692532-19694101 GTTCAATTCCCAGCAACCAC CATAGCCCAGCACTTCTTCC
14 chr1:134883350-134883624 TGAACACTAAGGAATTTGAG CTCCATCTTCAAGGCAGTCA
15 n270524 AGAACCCAAGTCAACCAG TCCCTACAGCAGTATCCC
16 chr16:4592919-4594230 CGCCAGAGCCACATCAAGAC TCAAACCGAAGCACCCATCA
Table 1 Primers of 16 differentially expressed lncRNAs for RT-qPCR
Fig.1 Differential expression profile of 200 lncRNAs in RAW264.7 cells after iH37Rv stimulation for 24h C1,C2 represent for untreated group,T1 represents for iH37Rv stimulation group
Number Acc. No.1) Chr
strand
FC.2) Relationship Nearby coding
gene
Chr
strand
FC.2)
1 FR394054 15(+) +72.9 Exon-sense overlapping Mtdh 15((+) +8.6
2 FR327109 19(-) +40.2 Exon-sense overlapping LF201763 19(-) n.a.
3 FR155939 2(+) +28.1 Exon-sense overlapping AK037119 2(+) n.a.
4 FR009074 12(-) +46.2 Intergenic Rps6ka5 12(-) -3.3
5 FR321982 2(+) +31.0 Exon-sense overlapping KF703539 2(+) n.a.
6 FR245513 10(-) +26.2 Exon-sense overlapping Cpsf6 10(-) n.a.
7 FR009059 X(+) +23.6 Exon-sense overlapping Zrsr2 X(-) +10.2
8 n291603 7(+) +96.4 Unknow n.a.
9 chr4:3437474-3438228 4(-) +58.1 Unknow n.a.
10 chr19:5834117-5835940 19(-) +40.7 Unknow n.a.
11 chr19:5795690-5797464 19(+) +34.7 Exon-sense overlapping AY722410 19(-) +2.0
12 chr19:5798135-5800557 19(-) +31.3 Intergenic Gm20417 19(+) n.a.
13 chr8:19692532-19694101 8(-) +30.1 Intergenic Gm6483 8(+) n.a.
14 chr1:134883350-134883624 1(-) +29.6 Intergenic Ppp1r12b 1(-) +5.1
15 n270524 2(-) -56.2 unknow n.a.
16 chr16:4592919-4594230 16(-) -25.7 Exon-sense overlapping Ak021285 16(-) -46.6
Table 2 Differential expression of 16 lncRNAs, and their positional relationship with adjacent protein-coding genes
Fig.2 Function annotation of differentially expressed mRNAs (a)-(c)GO analysis (d) KEGG analysis
Fig.3 Differential expression levels of 16 lncRNAs in RAW264.7 cells after iH37Rv stimulation for 24h by RT-qPCR Numbers 1 to 16 represent for lncRNAs as shown in Table 1 (* P<0.05,vs. untreated control group)
Fig.4 Differential expression levels of 16 lncRNAs in mouse lung (a) and spleen (b)tissues after H37Rv infection for 7 days by RT-qPCR * P<0.05,vs. untreated control group
[1]   World Health Organization. Global tuberculosis report 2016.[ 2017-11-23]. Global tuberculosis report 2016. [2017-11-23]. .
[2]   Andersson J, Samarina A, Fink J , et al. Impaired expression of perforin and granulysin in CD8 (+) T cells at the site of infection in human chronic pulmonary tuberculosis . Infect Immun, 2007,75(11):5210-5222.
doi: 10.1128/IAI.00624-07 pmid: 17664265
[3]   Hmama Z, Peña-Díaz S, Joseph S , et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015,264(1):220-232.
doi: 10.1111/imr.12268 pmid: 25703562
[4]   Rajaram M V, Ni B, Dodd C E , et al. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol, 2014,26(6):471-485.
doi: 10.1016/j.smim.2014.09.010 pmid: 25453226
[5]   Guirado E, Schlesinger L S, Kaplan G . Macrophages in tuberculosis: friend or foe. Semin Immunopathol, 2013,35(5):563-583.
doi: 10.1007/s00281-013-0388-2 pmid: 23864058
[6]   Cooper A M . Cell-mediated immune responses in tuberculosis. Annu Rev Immunol, 2009,27(1):393-422.
doi: 10.1146/annurev.immunol.021908.132703
[7]   Schaible U E, Winau F, Sieling P A , et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med, 2003,9(8):1039-1046.
doi: 10.1038/nm906 pmid: 12872166
[8]   Gan H X, Lee J H, Ren F C , et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol, 2008,9(10):1189-1197.
doi: 10.1038/ni.1654 pmid: 18794848
[9]   Nagano T, Fraser P . No-nonsense functions for long noncoding RNAs. Cell, 2011,145(2):178-181.
doi: 10.1016/j.cell.2011.03.014 pmid: 21496640
[10]   Tian D, Sun S, Lee J T . The long non coding RNA,Jpx,is a molecular switch for X chromosome in activation. Cell, 2010,143(3):390-403.
doi: 10.1016/j.cell.2010.09.049 pmid: 2994261
[11]   Hung T, Wang Y L, Lin M F , et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 2011,43(7):621-629.
doi: 10.1038/ng.848 pmid: 21642992
[12]   Szymanski M, Barciszewska M Z, Erdmann V A , et al. A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta, 2005,1756(1):65-75.
doi: 10.1016/j.bbcan.2005.07.005 pmid: 16125325
[13]   Li C H, Chen Y . Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol, 2013,45(8):1895-1910.
doi: 10.1016/j.biocel.2013.05.030 pmid: 23748105
[14]   Ouyang J, Zhu X M, Chen Y H , et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe, 2014,16(5):616-626.
doi: 10.1016/j.chom.2014.10.001 pmid: 25525793
[15]   Liu Z, Li X, Sun N , et al. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One, 2014,9(3):93388.
doi: 10.1371/journal.pone.0093388 pmid: 3968145
[16]   Fu Y, Xu X, Xue J , et al. Deregulated lncRNAs in B cells from patients with active tuberculosis. PLoS One, 2017,12(1):0170712.
doi: 10.1371/journal.pone.0170712 pmid: 28125665
[17]   Yi Z, Li J, Gao K , et al. Identifcation of differentially expressed long non-coding RNAs in CD4 + T cells response to latent tuberculosis infection . J Infect, 2014,69(6):558-568.
doi: 10.1016/j.jinf.2014.06.016 pmid: 24975173
[18]   Fu Y R, Gao K S, Tao E X , et al. Aberrantly expressed long non-coding RNAs in CD8 (+) T cells response to active tuberculosis . J Cell Biochem, 2017,118(12):4275-4284.
doi: 10.1002/jcb.v118.12
[19]   Zhao Z Z, Zhang M, Ying J , et al. Significance of genetic polymorphisms in long non-coding RNA AC079767.4 in tuberculosis susceptibility and clinical phenotype in Western Chinese Han population. Sci Rep, 2017,7(1):965.
doi: 10.1038/s41598-017-01163-y pmid: 5430418
[20]   Pawar K, Hanisch C , Palma Vera S E, et al. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep, 2016,6:19416.
doi: 10.1038/srep19416 pmid: 4725832
[21]   Wang Y, Zhong H, Xie X , et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8 + T-cell immune responses in tuberculosis infection . Proc Natl Acad Sci USA, 2015,112(29):3883-3892.
doi: 10.1073/pnas.1501662112 pmid: 26150504
[22]   Martinez A N, Mehra S, Kaushal D . Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis, 2013,207(8):1253-1261.
doi: 10.1093/infdis/jit037 pmid: 3693587
[23]   Cho S S L, Han J, James S J , et al. Dual-specificity phosphatase 12 targets p38 MAP kinase to regulate macrophage response to intracellular bacterial infection. Front Immunol, 2017,8:1259.
doi: 10.3389/fimmu.2017.01259
[24]   Palomino J C . Nonconventional and new methods in the diagnosis of tuberculosis: feasibility and applicability in the field. Eur Respir J, 2005,26(2):339-350.
doi: 10.1183/09031936.05.00050305 pmid: 16055883
[25]   Elhassan M M, Elmekki M A, Osman A L , et al. Challenges in diagnosing tuberculosis in children: a comparative study from Sudan. Int J Infect Dis, 2016,43:25-29.
doi: 10.1016/j.ijid.2015.12.006 pmid: 26701818
[26]   Mangtani P, Abubakar I, Ariti C , et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis, 2014,58(4):470-480.
doi: 10.1093/cid/cit790 pmid: 24336911
[27]   Yang X, Yang J, Wang J , et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep, 2016,6:38963.
doi: 10.1038/srep38963 pmid: 27966580
[28]   Yabaji S M, Mishra A K, Chatterjee A , et al. Peroxiredoxin-1 of macrophage is critical for mycobacterial infection and is controlled by early secretory antigenic target protein through the activation of p38 MAPK. Biochem Biophys Res Commun, 2017,494(3-4):433-439.
doi: 10.1016/j.bbrc.2017.10.055 pmid: 29032183
[1] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[2] YANG Ruo-nan,XU Li,XU Ping,SU Yan. The Development Situation and Suggestions of RNA Therapy Industry[J]. China Biotechnology, 2021, 41(2/3): 162-171.
[3] LIN Lu,HU Li-jun,HUANG Yi-yun,CHEN Lu,HUANG Mao,PENG Qi,HU Qin,ZHOU Lan. S100A6 Promotes Angiogenesis Through Recruiting and Activating Macrophages[J]. China Biotechnology, 2020, 40(5): 7-14.
[4] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[5] Lu CHEN,Mao HUANG,Qi PENG,Jia-li ZHAO,Jia-qing XIE,Lu LIN,Li-jun HU,Yi-yun HUANG,Qin HU,Lan ZHOU. S100A6 Promotes Cell Proliferation of Colorectal Cancer via Upregulating IL-6 Expression of Macrophages[J]. China Biotechnology, 2019, 39(4): 1-7.
[6] HU Shun,YI You-jin,HU Tao,LI Fu-sheng. Development and Clinical Progress of mRNA Vaccine[J]. China Biotechnology, 2019, 39(11): 105-112.
[7] Jiao-rong QIN, Zhao ZHAO, Xin-mei LUO, Chun-yang LI. Increasing the Expression Level of Soluble Tumor Necrosis Factor Type I Based on Optimization of Secondary Structure of mRNA 5' Terminal TIR[J]. China Biotechnology, 2018, 38(3): 62-69.
[8] FU Hui, LI Fei-fei, MA Qiong, FU Huai-xiu, CUI Yu-fang, MAO Jian-ping. Experimental Screening mRNA Targets by Reverse Transcription for Ribozyme to GPA Expression Interference[J]. China Biotechnology, 2014, 34(3): 84-90.
[9] MA Pan, LIU Hong-tao, XU Qing-song, BAI Xue-fang, DU Yu-guang. Effects of Chitosan Oligosaccharides Attenuating Menadione-induced Injury in Macrophages[J]. China Biotechnology, 2011, 31(06): 18-21.
[10] LI Qiao-Qiao, WANG Qing-Lu, ZHANG Yu-Jun, ZHANG Dui, XU Shou-Ceng. Cloning and Expression in Pichia pastoris of Human Granulocyte-macrophage Colony Stimulating Factor[J]. China Biotechnology, 2010, 30(01): 35-40.
[11] . Profiling Membrane Proteome of Macrophages by One-dimensional PAGE and Liquid Chromatography –Tandem Mass Spectrometry[J]. China Biotechnology, 2007, 27(4): 77-82.
[12] . [J]. China Biotechnology, 1998, 18(2): 12-16.
[13] . [J]. China Biotechnology, 1997, 17(2): 64-67.