Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (9): 66-70    DOI: 10.13523/j.cb.20150910
    
Biological Function and Research Methods of Long Noncoding RNA
LI Ran, WANG Tian, ZHU Hong-liang
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Download: HTML   PDF(364KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Long noncoding RNA (lncRNA),longer than 200 nucleotides, can not encode protein, and directly plays a role in the form of RNA at transcription and post-transcription level as decoys, signals, guides, and scaffolds. Compared with the expression of encoding protein gene, the expression of lncRNA is lower. Genomewide studies have uncovered there are only a small amount of the encoding gene, while there are a large number of ncRNAs, which play regulatory role in plants, animals and human. In recent years, the study of ncRNA has been mainly on miRNA and siRNA, having achieved fruitful results. However the research of lncRNA has just begun, some researches have shown that lncRNA has extensive biological functions,such as chromosome modification, X chromosome silencing, transcription interference, transcription activation, and nuclear transport. Meanwhile the related research methods represented for RNA-seq, microarray, and FISH are also developing.



Key wordsncRNA      lncRNA      Biological function     
Received: 10 April 2015      Published: 25 September 2015
ZTFLH:  Q81  
Cite this article:

LI Ran, WANG Tian, ZHU Hong-liang. Biological Function and Research Methods of Long Noncoding RNA. China Biotechnology, 2015, 35(9): 66-70.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150910     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I9/66


[1] Human Genome Sequencing Consortium I. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011): 931-945.

[2] Mercer Tr D M M J. Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 2009, 10(3): 155-159.

[3] Wang K C, Chang H Y. Molecular mechanisms of long noncoding RNAs. Molecular Cell, 2011, 43(6): 904-914.

[4] Heo J B, Lee Y, Sung S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Rese

[1] Human Genome Sequencing Consortium I. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011): 931-945.

[2] Mercer Tr D M M J. Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 2009, 10(3): 155-159.

[3] Wang K C, Chang H Y. Molecular mechanisms of long noncoding RNAs. Molecular Cell, 2011, 43(6): 904-914.

[4] Heo J B, Lee Y, Sung S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Research, 2013, 21(6-7): 685-693.

[5] Akua T, Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron. Journal of Experimental Botany, 2013, 64(14): 4255-4270.

[6] Christie M, Croft L J, Carroll B J. Intron splicing suppresses RNA silencing in Arabidopsis. The Plant Journal, 2011, 68(1): 159-167.

[7] Chung B Y W, Simons C, Firth A E, et al. Effect of 5' UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics, 2006, 7(1): 120.

[8] Batista PJ, Chang H Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013, 152(6): 1298-1307.

[9] Khalil A M, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672.

[10] Kung J T Y, Colognori D, Lee J T. Long noncoding RNAs: past, present, and future. Genetics, 2013, 193(3): 651-669.

[11] Lee J T. The X as model for RNA's niche in epigenomic regulation. Cold Spring Harbor Perspectives in Biology, 2010, 2(9): a3749.

[12] Yang L, Froberg J E, Lee J T. Long noncoding RNAs: fresh perspectives into the RNA world. Trends in Biochemical Sciences, 2014, 39(1): 35-43.

[13] Øom U A, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell, 2013, 154(6): 1190-1193.

[14] Ulitsky I, Bartel D P. lincRNAs: genomics, evolution, and mechanisms. Cell, 2013, 154(1): 26-46.

[15] Zhang Y, Chen Y. Long noncoding RNAs: new regulators in plant development. Biochemical and Biophysical Research Communications, 2013, 436(2): 111-114.

[16] Ding J, Lu Q, Ouyang Y, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences, 2012, 109(7): 2654-2659.

[17] Sun Q, Csorba T, Skourti-Stathaki K, et al. R-loop stabilization represses antisense transcription at the arabidopsis FLC locus. SCIENCE, 2013, 340(6132): 619-621.

[18] Wahba L A K D. The Rs of biology: R-loops and the regulation of regulators. Yangtze River Academic, 2013, 50(5):611-612.

[19] Inagaki S, Numata K, Kondo T, et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes to Cells, 2005, 10(12): 1163-1173.

[20] Wang K C, Yang Y W, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341): 120-124.

[21] Ariel F, Jegu T, Latrasse D, et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell, 2014, 55(3): 383-396.

[22] Kim T, Hemberg M, Gray J M, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010, 465(7295): 182-187.

[23] Lam M T Y, Li W, Rosenfeld M G, et al. Enhancer RNAs and regulated transcriptional programs. Trends in Biochemical Sciences, 2014, 39(4): 170-182.

[24] Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature, 2013, 498(7455): 516-520.

[25] Natoli G, Andrau J C. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet, 2012, 46: 1-19.

[26] Kondo T, Plaza S, Zanet J, et al. Small peptides switch the transcriptional activity of shavenbaby during drosophila embryogenesis. Science, 2010, 329(5989): 336-339.

[27] Hung T, Chang H Y. Long noncoding RNA in genome regulation Prospects and mechanisms. Rna Biology, 2010, 7(5): 582-585.

[28] Martianov I, Ramadass A, Serra Barros A, et al. Repression of the human dihydofolate reductase gene by a non-coding interfering transcript. Nature, 2007, 445(7128): 666-670.

[29] Wu H J, Wang Z M, Wang M, et al. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiology, 2013, 161(4): 1875-1884.

[30] Daughters R S, Tuttle D L, Gao W, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genetics, 2009, 5(8): e1000600.

[31] Faghihi M A, Modarresi F, Khalil A M, et al. Expression of a noncoding RNA is elevated in Alzheimer' disease and drives rapid feed-forward regulation of β-secretase. Nature Medicine, 2008, 14(7): 723-730.

[32] Sonkoly E, Bata-Csorgo Z, Pivarcsi A, et al. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. Journal of Biological Chemistry, 2005, 280(25): 24159-24167.

[33] Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology, 2010, 151(3): 939-947.

[34] Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3): 409-419.

[35] Ørom U A, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143(1): 46-58.

[36] Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63.

[37] Liu J, Jung C, Xu J, et al. Genome-wide analysis uncovers regulation of long Intergenic noncoding RNAs in Arabidopsis. The Plant Cell, 2012, 24(11): 4333-4345.

[38] Li L, Eichten S R, Shimizu R, et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol, 2014, 15(2): R40.

[39] Ilott N E, Ponting C P. Predicting long non-coding RNAs using RNA sequencing. Methods, 2013, 63(1): 50-59.

[40] Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992): 689-693.

[41] Chu C, Qu K, Zhong F L, et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 2011, 44(4): 667-678.

[42] Simon M D, Wang C I, Kharchenko P V, et al. The genomic binding sites of a noncoding RNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20497-20502.

[43] Yan B, Wang Z, Guo J. The research strategies for probing the function of long noncoding RNAs. Genomics, 2012, 99(2): 76-80.

[44] Zhu J, Fu H, Wu Y, et al. Function of lncRNAs and approaches to lncRNA-protein interactions. Science China Life Sciences, 2013, 56(10): 876-885. arch, 2013, 21(6-7): 685-693.

[5] Akua T, Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron. Journal of Experimental Botany, 2013, 64(14): 4255-4270.

[6] Christie M, Croft L J, Carroll B J. Intron splicing suppresses RNA silencing in Arabidopsis. The Plant Journal, 2011, 68(1): 159-167.

[7] Chung B Y W, Simons C, Firth A E, et al. Effect of 5' UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics, 2006, 7(1): 120.

[8] Batista PJ, Chang H Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013, 152(6): 1298-1307.

[9] Khalil A M, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672.

[10] Kung J T Y, Colognori D, Lee J T. Long noncoding RNAs: past, present, and future. Genetics, 2013, 193(3): 651-669.

[11] Lee J T. The X as model for RNA's niche in epigenomic regulation. Cold Spring Harbor Perspectives in Biology, 2010, 2(9): a3749.

[12] Yang L, Froberg J E, Lee J T. Long noncoding RNAs: fresh perspectives into the RNA world. Trends in Biochemical Sciences, 2014, 39(1): 35-43.

[13] om U A, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell, 2013, 154(6): 1190-1193.

[14] Ulitsky I, Bartel D P. lincRNAs: genomics, evolution, and mechanisms. Cell, 2013, 154(1): 26-46.

[15] Zhang Y, Chen Y. Long noncoding RNAs: new regulators in plant development. Biochemical and Biophysical Research Communications, 2013, 436(2): 111-114.

[16] Ding J, Lu Q, Ouyang Y, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences, 2012, 109(7): 2654-2659.

[17] Sun Q, Csorba T, Skourti-Stathaki K, et al. R-loop stabilization represses antisense transcription at the arabidopsis FLC locus. SCIENCE, 2013, 340(6132): 619-621.

[18] Wahba L A K D. The Rs of biology: R-loops and the regulation of regulators. Yangtze River Academic, 2013, 50(5):611-612.

[19] Inagaki S, Numata K, Kondo T, et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes to Cells, 2005, 10(12): 1163-1173.

[20] Wang K C, Yang Y W, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341): 120-124.

[21] Ariel F, Jegu T, Latrasse D, et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell, 2014, 55(3): 383-396.

[22] Kim T, Hemberg M, Gray J M, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010, 465(7295): 182-187.

[23] Lam M T Y, Li W, Rosenfeld M G, et al. Enhancer RNAs and regulated transcriptional programs. Trends in Biochemical Sciences, 2014, 39(4): 170-182.

[24] Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature, 2013, 498(7455): 516-520.

[25] Natoli G, Andrau J C. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet, 2012, 46: 1-19.

[26] Kondo T, Plaza S, Zanet J, et al. Small peptides switch the transcriptional activity of shavenbaby during drosophila embryogenesis. Science, 2010, 329(5989): 336-339.

[27] Hung T, Chang H Y. Long noncoding RNA in genome regulation Prospects and mechanisms. Rna Biology, 2010, 7(5): 582-585.

[28] Martianov I, Ramadass A, Serra Barros A, et al. Repression of the human dihydofolate reductase gene by a non-coding interfering transcript. Nature, 2007, 445(7128): 666-670.

[29] Wu H J, Wang Z M, Wang M, et al. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiology, 2013, 161(4): 1875-1884.

[30] Daughters R S, Tuttle D L, Gao W, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genetics, 2009, 5(8): e1000600.

[31] Faghihi M A, Modarresi F, Khalil A M, et al. Expression of a noncoding RNA is elevated in Alzheimer' disease and drives rapid feed-forward regulation of β-secretase. Nature Medicine, 2008, 14(7): 723-730.

[32] Sonkoly E, Bata-Csorgo Z, Pivarcsi A, et al. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. Journal of Biological Chemistry, 2005, 280(25): 24159-24167.

[33] Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology, 2010, 151(3): 939-947.

[34] Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3): 409-419.

[35] rom U A, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143(1): 46-58.

[36] Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63.

[37] Liu J, Jung C, Xu J, et al. Genome-wide analysis uncovers regulation of long Intergenic noncoding RNAs in Arabidopsis. The Plant Cell, 2012, 24(11): 4333-4345.

[38] Li L, Eichten S R, Shimizu R, et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol, 2014, 15(2): R40.

[39] Ilott N E, Ponting C P. Predicting long non-coding RNAs using RNA sequencing. Methods, 2013, 63(1): 50-59.

[40] Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992): 689-693.

[41] Chu C, Qu K, Zhong F L, et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 2011, 44(4): 667-678.

[42] Simon M D, Wang C I, Kharchenko P V, et al. The genomic binding sites of a noncoding RNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20497-20502.

[43] Yan B, Wang Z, Guo J. The research strategies for probing the function of long noncoding RNAs. Genomics, 2012, 99(2): 76-80.

[44] Zhu J, Fu H, Wu Y, et al. Function of lncRNAs and approaches to lncRNA-protein interactions. Science China Life Sciences, 2013, 56(10): 876-885.

[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[3] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[4] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[5] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[6] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[7] Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG. Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation[J]. China Biotechnology, 2018, 38(5): 1-9.
[8] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[9] DU Jing-jing, TAN Zhen-dong, LIU Chen-dong, WU Xiao-qiao, ZHANG Pei-wen, ZHANG Shun-hua, ZHU Li. Research Progress of Long Non-coding RNAs[J]. China Biotechnology, 2016, 36(9): 59-74.
[10] LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA[J]. China Biotechnology, 2016, 36(11): 76-82.
[11] FENG Tian-xiang, WANG Ling, CHEN Hai-min, SHENG Qing, ZUO Rui, XIE Wen-jie. Research Advances on Function and Bioactive Substances of Endophytic actinomycetes[J]. China Biotechnology, 2015, 35(4): 98-106.
[12] LOU Liang-liang, ZHU Yun-feng. Long Noncoding RNA and Its Relationship with Cancer[J]. China Biotechnology, 2013, 33(7): 82-89.
[13] YU Zhi-liang, ZHOU Ning, QIAO Hua. Advances in L-amino Acid Oxidase[J]. China Biotechnology, 2012, 32(03): 125-135.
[14] HUI Xi-Wu, CHEN Gong, HUANG Bing-Ren. The Latest Research Progress of IFN-λs[J]. China Biotechnology, 2010, 30(04): 95-100.