Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (9): 73-78    DOI:
    
The Optimization of Medium for Coenzyme Q10 Fermentation by Artificial Neural Network associated with Genetic Algorithms
ZHOU Yong, ZHENG Yi, SONG Li-dan
Engineering Research Centre of Industrial Microbiology Under Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350108 China
Download: HTML   PDF(538KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  In order to improve the yield of Coenzyme Q10 produced by Rhodobacter sphaeroides F3-40. First, the reasonable concentration ranges of 4 important medium components were determined by single-factor experiments. On the basis of the above results, uniform design method was adopted to optimize their combination. Square stepwise regression analyses, artificial neural network associated with genetic algorithms optimization (ANN-GA) were used to optimize their concentrations respectively. From results, the ANN-GA showed better optimization effect. In the end, the yield of Coenzyme Q10 by ANN-GA reached 245mg/L, increased 10.86%,16.11% and 63.33% more than that of square stepwise regression analysis (221mg/L), single-factor analysis (211 mg/L) and the primary (150mg/L) respectively.

Key wordsCoenzyme Q10      Artificial neural network      Genetic algorithms      Uniform design method     
Received: 23 April 2013      Published: 25 September 2013
ZTFLH:  Q815  
Cite this article:

ZHOU Yong, ZHENG Yi, SONG Li-dan. The Optimization of Medium for Coenzyme Q10 Fermentation by Artificial Neural Network associated with Genetic Algorithms. China Biotechnology, 2013, 33(9): 73-78.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I9/73

[1] 吴祖芳,翁佩芳, 陈坚. 辅酶 Q10 的功能研究进展. 宁波大学学报, 2001, 2: 85-88. Wu Z F, Wen P F, Chen J. Advances of coenzyme Q(10) function studies. Journal of Ningbo University, 2001, 2: 85-88.
[2] 欧阳平凯, 胡永红. 辅酶 Q10 的生产及其应用. 化工进展, 1994, 4: 9-11. Ou Yang P K, Hu Y H. Production and application of coenzyme Q(10). Chemical Industry and Engineering Progress, 1994, 4: 9-11.
[3] Nohl H, Kozlov A V, Staniek K, et al. The multiple functions of coenzyme Q. Bioorganic chemistry, 2001, 1: 1-13.
[4] 袁静, 魏泓. 微生物发酵生产辅酶 Q(10) 的研究进展. 氨基酸和生物资源, 2004, 1: 53-56. Yuan J, Wei H. Recent progress of ubiquinone-10 production by microbial fermentation. Amino Acids & Biotic Resources, 2004, 1: 53-56.
[5] Cluis C P, PineD l, Martin V J. The production of coenzyme Q10 in microorganisms, Netherlands: Springer, 2012, 303-326.
[6] 任鹏,姚兵,李伟静, 等. 类球红细菌添加前体物产辅酶 Q(10) 的工艺优化. 生物技术通讯, 2010, 5: 695-698. Ren P, Yao B, Li W J, et al. Optimizing precursors conditions of coenzyme Q10 production in rhodobacter sphaeroides. Letters In Biotechnology, 2010, 5: 695-698.
[7] 邵玲莉, 石玲玲. 辅酶 Q10 产生菌发酵条件的优化. 生物加工过程, 2010, 2: 18-22. Shao L L, Shi L L. Optimization of fermentation conditions for production of CoQ10. Chinese Journal of Bioprocess Engineering, 2010, 2: 18-22.
[8] 李季, 蒲彪. 人工神经网络在食品微生物发酵中的应用. 食品研究与开发, 2009, 4: 171-174. Li J, Pu B. Application of artificial neural network on food microbe fermentation. Food Research and Development, 2009, 4: 171-174.
[9] 张彦青, 张五九. 基于神经网络的大生产规模啤酒发酵过程建模. 食品与发酵工业, 2007, 9: 86-91. Zhang Y Q, Zhang W J. Establishment of predictive model for veer fermentation process. Food and Fermentation Industries, 2007, 9: 86-91.
[10] 杜中华, 王兴贵, 狄长春. 基于实验, 神经网络和遗传算法的一种优化设计方法. 机械设计与制造工程, 2001, 6: 22-24. Du Z H, Wang X G, Di C C. An optimal design based on experiment, neural networks and genetic. Algorithm. Mechanical Design and Manufacture, 2001, 6: 22-24.
[11] Nagata Y, Chu K H. Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnology Letters, 2003, 21: 1837-1842.
[12] SarkaD r, Modak J M. Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Computers & Chemical Engineering, 2004, 5: 789-798.
[13] Subba C R, Sathish T, Mahalaxmi M, et al. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Journal of Applied Microbiology, 2008, 3: 889-898.
[14] 吴祖芳, 堵国成, 陈坚. 发酵液中辅酶 Q(10) 的分离纯化和定量分析. 无锡轻工大学学报, 2002, 4: 420-423. Wu Z F, Du G C, Chen J. Studies on the purification and quantitative analysis of coenzyme Q10 in culture, Journal of WuXi University of Light Industry, 2002, 4: 420-423.
[15] 朱志春,郑毅,朱中南, 等. 超声波破碎法提取辅酶 Q10 研究. 海峡科学, 2012, 2: 17-19. Zhu ZH CH, Zheng Y, Zhu ZH N, et al. Studies on the extraction of Coenzyme Q10. Straits Science, 2012, 2: 17-19.
[16] 秦娟,韩静,杨官娥, 等. HPLC 法测定光合细菌菌液中辅酶 Q(10) 的含量. 山西医科大学学报, 2008, 9: 835-837. Qin Q, Han J, Yang G E, et al. Determination of coenzyme Q10 in photosynthetic bacteria culture medium by HPLC, Journal of Shanxi Medical University, 2008, 9: 835-837.
[17] 夏江,梅乐和,黄俊, 等. 神经网络和粒子群算法优化 γ-氨基丁酸发酵培养基的研究. 高校化学工程学报,2007, 6: 997-1001. Xia J, Mei L H, Huang J, et al. Optimization of γ-aminobutyric acid fermentation medium based on artificial neural network and particle swarm optimization. Journal of Chemical Engineering of Chinese Universities, 2007, 6: 997-1001.
[1] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[2] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[3] WANG You-bei,GUO Si-yu,CHANG Bi-bo,YE Rui-fang,HUA Qiang. Establishment of Conjugation System for the Spiramycin Producer Streptomyces spiramyceticus[J]. China Biotechnology, 2021, 41(2/3): 45-52.
[4] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[5] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[6] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[7] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[8] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[9] WANG Ze-jian,LI Bo,WANG Ping,ZHANG Qin,HANG Hai-feng,LIANG Jian-guang,ZHUANG Ying-ping. Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis[J]. China Biotechnology, 2020, 40(5): 30-39.
[10] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[11] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[12] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[13] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[14] CUI Zi-hong,JI Xiu-ling. Advances in Bacteria-Phage Antagonistic Coevolution[J]. China Biotechnology, 2020, 40(1-2): 140-145.
[15] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.