Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 45-52    DOI: 10.13523/j.cb.2010009
    
Establishment of Conjugation System for the Spiramycin Producer Streptomyces spiramyceticus
WANG You-bei1,GUO Si-yu1,CHANG Bi-bo2,YE Rui-fang1,HUA Qiang1,*()
1 State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
2 Topfond Pharmaceutical Co. Ltd, Zhumadian 463000, China
Download: HTML   PDF(15138KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Background:Streptomyces spiramyceticus is used to produce spiramycin (SPM) in China. So far, the successful genetic modification has not been reported in S. spiramyceticus.Objective:The appropriate genetic transformation system of S. spiramyceticus was established in order to modify the composition of SPM and reduce the separation costs of SPM based on genetic operation.Methods:The conjugal transfer system was conducted by conjugation with Escherichia coli ET12567/pUZ8002, and the factors that influence the conjugation efficiency, including culture medium, antibiotic coverage time, and donor/recipient ratio, were investigated and optimized.Results:The experimental results showed that S. spiramyceticus spores were not suitable for conjugal transfer and the best medium for conjugal transfer was ISP4. The maximum transconjugants were obtained when the donor/recipient ratio was 103∶1. The best conjugation efficiency was 1.93×10-4 and the percentage of SPM changed significantly.Conclusion:The efficient and simple genetic transformation system for producing strain S. spiramyceticus was established. Based on this method, the sspA gene was knocked out and φC31 locus attB was integrated into S. spiramyceticus genome successfully, which laid the foundation for further biosynthetic gene modification in the strain.



Key wordsStreptomyces spiramyceticus      Mycelium conjugal transfer      Spiramycin      CRISRP/Cas9     
Received: 12 November 2020      Published: 08 April 2021
ZTFLH:  Q815  
Corresponding Authors: Qiang HUA     E-mail: qhua@ecust.edu.cn
Cite this article:

WANG You-bei,GUO Si-yu,CHANG Bi-bo,YE Rui-fang,HUA Qiang. Establishment of Conjugation System for the Spiramycin Producer Streptomyces spiramyceticus. China Biotechnology, 2021, 41(2/3): 45-52.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2010009     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/45

培养时间 1d 3d 5d 7d 9d 11d 13d
产孢情况 - - - + ++ ++
Table 1 Spore production of S. spiramyceticus
Fig.1 Colony morphology of S. spiramyceticus cultured in spore culture medium at 28℃ (a) Colony morphology changes with culture time (b) Different colony morphology at 13d of culture
抗生素 最高耐药性(μg/mL)
壮观霉素 45
阿泊拉霉素 60
卡那霉素 60
链霉素 60
Table 2 Susceptibility of S. spiramyceticus to different antibiotics
培养基 CM MS GS ISP4
单位体积菌液形成的菌落数
(CFU/mL)
None 102 101 102
Table 3 Growth of S. spiramyceticus in different medium
Fig.2 pCRISRP/Cas9 sspA+HA plasmid
载体类型 载体名称 链霉菌复制子 大肠杆菌复制子 抗性 接合转移效率
整合型 pIB139 无,有int整合位点和attP位点 Col El ori Apr None
穿梭型 pCRISRP/Cas9 sspA+HA pSC5 ori Col El ori Apr 1.93×10-4
Table 4 Conjugation efficiency of different plasmids
Fig.3 Effects of donor/recipient ratios on conjugation efficiency
Fig.4 Sequencing chromatograms for the △sspA∷φC31 attB mutant
Fig.5 Relative contents of SPM I, SPM II and SPM III (a) Wild-type strain (b) Mutant strain
Fig.6 Schematic diagram of conjugation process of S. spiramyceticus
[1]   司良. 大环内酯类抗生素的作用机制与应用进展. 现代预防医学, 2010,37(22):4397-4398.
[1]   Si L. The action mechanism and application progress of macrolide antibiotics. Modern Preventive Medicine, 2010,37(22):4397-4398.
[2]   孙丽文. 螺旋霉素类抗生素体内过程探讨. 国外医药(抗生素分册), 1998,19(5):358-361, 365.
[2]   Sun L W. Study on the in vivo process of spiramycin antibiotics. World Notes on Antibiotics, 1998,19(5):358-361, 365
[3]   朱峰, 王尔健. 螺旋霉素的再评价. 中国抗生素杂志, 1991,16(3):231-236.
[3]   Zhu F, Wang E J. Spiramycin reassessed. Chinese Journal of Antibiotics, 1991,16(3):231-236.
[4]   姚开亚. 降低螺旋霉素发酵杂质F、A、D、B的工艺优化及影响因素分析. 上海: 华东理工大学, 2015.
[4]   Yao K Y. Reducing of impurities F,A,D,B and analysis of the influence factors in the fermentation of spramycin by Streptomyces ambofaciens. Shanghai: East China University of Science and Technology, 2015.
[5]   曾俊. 螺旋霉素的生物合成及有效组分优化研究. 上海: 华东理工大学, 2015.
[5]   Zeng J. Study on biosynthesis of spiramycin and effective components optimization. Shanghai: East China University of Science and Technology, 2015.
[6]   梁培培, 高淑红, 姚开亚, 等. 丙三醇对螺旋霉素Ⅰ发酵的影响及机理分析. 华东理工大学学报(自然科学版), 2020,46(1):41-47.
[6]   Liang P P, Gao S H, Yao K Y, et al. Effect and mechanism of glycerol addition on spiramycin I fermentation. Journal of East China University of Science and Technology, 2020,46(1):41-47.
[7]   吴胜, 夏焕章. 链霉菌基因转移的方法. 生物工程进展, 2002,22(1):91-94.
[7]   Wu S, Xia H Z. The methods of gene transfer in Streptomyces. Progress in Biotechnology, 2002,22(1):91-94.
[8]   李晓华, 龙慈凡, 周秀芬, 等. 链霉菌质粒pSET152电转化稀有放线菌小单孢菌的研究. 微生物学报, 2007,47(4):718-720.
[8]   Li X H, Long C F, Zhou X F, et al. Study on electroporation of rare Actinomycete Micromonospora sp.40027 with Streptomyces plasmid pSET152. Acta Microbiologica Sinica, 2007,47(4):718-720.
[9]   Ma Z, Liu J X, Shentu X P, et al. Optimization of electroporation conditions for toyocamycin producer Streptomyces diastatochromogenes 1628. Journal of Basic Microbiology, 2014,54(4):278-284.
doi: 10.1002/jobm.201200489 pmid: 23775805
[10]   Wang H, Wang W Y, Wu M, et al. Establishment and optimization of a conjugation system for the daptomycin producer Streptomyces roseosporus NRRL11379. Chinese Journal of Pharmaceutical Biotechnology, 2014,21(3):194-198.
[11]   Zhang S M, Chen T S, Jia J, et al. Establishment of a highly efficient conjugation protocol for Streptomyces kanamyceticus ATCC12853. MicrobiologyOpen, 2018,8(6):e00747.
[12]   Song Z Q, Liao Z J, Hu Y F, et al. Development and optimization of an intergeneric conjugation system and analysis of promoter activity in Streptomyces rimosus M527. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2019,20(11):891-900.
[13]   王露, 朱世扬, 赵春田, 等. 加纳链霉菌接合转移体系的建立与优化. 浙江农业学报, 2018,30(11):1965-1971.
[13]   Wang L, Zhu S Y, Zhao C T, et al. Establishment and optimization of Streptomyces ghanaensis conjugation system. Acta Agriculturae Zhejiangensis, 2018,30(11):1965-1971.
[14]   张晋龙, 马怡茗, 舒伟学, 等. 羽毛降解杆状链霉菌S-28遗传转化系统的建立与优化. 西北农林科技大学学报(自然科学版), 2018,46(5):94-100.
[14]   Zhang J L, Ma Y M, Shu W X, et al. Establishment and optimization of genetic transformation system for feather-degrading strain Streptomyces bacillaris S-28. Journal of Northwest A& F University(Natural Science Edition), 2018,46(5):94-100.
[15]   郑雷, 颜望明, 刘振盈. 细菌接合转移及其调控机制的研究进展. 微生物学通报, 1997,24(4):244-246.
[15]   Zheng L, Yan W M, Liu Z Y. Advances in the study of bacterial conjugal transfer and its regulatory mechanism. Microbiology China, 1997,24(4):244-246.
[16]   Arber W, Linn S. DNA modification and restriction. Annual review of Biochemistry, 1969,38(1):467-500.
[17]   Arber W, Wauters-Willems D. Host specificity of DNA produced by Escherichia coli. Molecular and General Genetics MGG, 1970,108(3):203-217.
doi: 10.1007/BF00283350 pmid: 4920152
[18]   邓会群. 链霉菌AM-7161遗传操作系统的建立和糖基转移酶基因med-ORF8原核表达的研究. 武汉: 华中师范大学, 2009.
[18]   Deng H Q. Establishment of the genetic manipulation system of AM-7161 and prokaryotic expression study on the C-glycosyltransferase gene med-ORF8. Wuhan: Central China Normal University, 2009.
[19]   戴剑漉, 卢智黎, 林灵, 等. 利用异源正调控基因acyB2构建埃莎霉素Ⅰ高产菌株. 中国生物工程杂志, 2017,37(3):65-72.
[19]   Dai J L, Lu Z L, Lin L, et al. Construction of the isomycin Ⅰ high-yield strain by introducing a heterologous positive regulatory gene acyB2. China Biotechnology, 2017,37(3):65-72.
[20]   郭燕华, 安邦. 基于CRISPR-Cas9技术构建橡胶树胶孢炭疽菌的基因敲除系统. 微生物学通报, 2020,47(1):109-117.
[20]   Guo Y H, An B. CRISPR-Cas9 ribonucleoprotein-mediated gene knock-out in Colletotrichum gloeosporioides from Hevea brasiliensis. Microbiology China, 2020,47(1):109-117.
[21]   Tong Y J, Charusanti P, Zhang L X, et al. CRISPR-Cas9 based engineering of actinomycetal genomes. Acs Synthetic Biology, 2015,4(9):1020-1029.
[1] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[2] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[3] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[4] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[5] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[6] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[7] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[8] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[9] WANG Ze-jian,LI Bo,WANG Ping,ZHANG Qin,HANG Hai-feng,LIANG Jian-guang,ZHUANG Ying-ping. Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis[J]. China Biotechnology, 2020, 40(5): 30-39.
[10] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[11] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[12] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[13] CUI Zi-hong,JI Xiu-ling. Advances in Bacteria-Phage Antagonistic Coevolution[J]. China Biotechnology, 2020, 40(1-2): 140-145.
[14] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[15] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.