Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (2): 25-30    DOI: 10.13523/j.cb.20150204
    
Cloning and Function Study of amtS Gene from Saccharopolyspora spinosa
TAO Wen-na, XIA Li-qiu, DING Xue-zhi, TANG Ying
College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
Download: HTML   PDF(916KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Ammonium ion is one of the precursors for biosynthesis of nucleic acids, amino acids and cofactors. The transportation of NH4+ through the cell plasma membrane is mediated by ammonium carrier protein. The ammonium carrier protein encoding gene of Saccharopolyspora spinosa was cloned, and its effects on the production of secondary metabolites of Streptomyces coelicolor and Streptomyces lividans were evaluated. Methods:The amtS gene of S. spinosa was cloned into E. coli-Streptomyces shuttle vector pMF and transferred into S. coelicolor M145 and S. lividans TK24 by conjugation. The phenotypes of the recombinants were compared with the parental strains, and the effects of amtS overexpression on the production of secondary metabolites were analyzed. Results:The yields of actinorhodin and undecylprodigiosin in both M145/pMF-amtS and TK24/pMF-amtS were greatly improved. The yields of actinorhodin were elevated by 2.85 and 30.02 times, respectively. Conclusion:Heterologous expression of amtS from Saccharopolyspora spinosa could improve the production of secondary metabolites, which provided the important basis for its function study in Saccharopolyspora spinosa.



Key wordsAmmonium carrier protein      Streptomyces      Heterologous expression      Conjugation     
Received: 03 December 2014      Published: 25 February 2015
ZTFLH:  Q819  
Cite this article:

TAO Wen-na, XIA Li-qiu, DING Xue-zhi, TANG Ying. Cloning and Function Study of amtS Gene from Saccharopolyspora spinosa. China Biotechnology, 2015, 35(2): 25-30.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150204     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I2/25


[1] Tang Y, Xia L, Ding X, et al. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol Lett, 2011,325(1):22-29.

[2] Waldron C,Matsushima P,Rosteck P R. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chemistry and Biology,2001,8(5):487-499.

[3] Luo Y, Ding X, Xia L, et al.Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci,2011, 9:40.

[4] Luo Y, Kou X, Ding X, et al.Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa. Sci China Life Sci, 2012,55(2):172-180.

[5] 邓若磊, 徐海荣, 曹云飞, 等.植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报,2007,13 (3):512-519. Deng R L, Xu H R, Cao Y F, et al. The molecular basis of ammonium transporters in plant. Plant Nutrition and Fertilizer Science, 2007,13 (3):512-519.

[6] Van Wezel G P, Van der Meulen J, Kawamoto S, et al. SsgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J Bacteriol, 2000,182(20):5653-5662.

[7] Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol,1996,178(24):7276-7284.

[8] Kesier T, Bibb M J, Butter M J, et al. Practical Streptomyces Genetics. Norwich (United K):John Innes Foundation,2000, 488(1):25-37.

[9] Chinping Chng, Amy M L, Jonathan A Vroom, et al. A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. PNAS,2008, 105,(32):11346-11351.

[10] Zhang Q, Zhu B Q, Hu H F. Activated antibiotic production by inducing resistance to capreomycin in Streptomyces lividans and Streptomyces coelicolor.Chinese Journal of Natural Medicines,2008,6:57-62.

[1] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[2] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[3] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[4] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[5] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[6] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[7] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[8] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[9] LI Xiao-mei, LIN Chun-yan, PANG Ai-ping, LI Xiao-bo, ZHAO Guang-rong. Application of Synthetic Biology in Research and Development of the Secondary Metabolites from Streptomyces[J]. China Biotechnology, 2015, 35(4): 92-97.
[10] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[11] BAI Li-ping, JIANG Rong, GUO Lian-hong, ZHANG Yang, LI Yuan. The Effects of ste3 and ste4 Genes Double Disruption in Ebosin Biosynthesis[J]. China Biotechnology, 2015, 35(11): 23-28.
[12] YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023[J]. China Biotechnology, 2014, 34(8): 47-53.
[13] LUO Man-jie, XIE Yuan, QIAN Zhi-gang, FENG Yan, YANG Guang-yu. High-level Heterogenous Expression of a Hyperthermophilic Esterase in Different Hosts[J]. China Biotechnology, 2014, 34(12): 36-44.
[14] QIAN Hui, ZHANG Chong, LU Zhao-xin, BIE Xiao-mei, ZHAO Hai-zhen, LV Feng-xia. Expression of Paenibacillus polymyxa EJS-3 Fibrinolytic Enzyme Gene in Pichia pastoris[J]. China Biotechnology, 2014, 34(12): 45-50.
[15] LI Si-jia, WANG Ya-wei, FU Zheng, WANG Wen-jun, Ossi Turunen, XIONG Hai-rong. Expression of Thermomyces lanuginosus Xylanase 1YNA and Its Disulphide Bridge Mutant in Pichia Pastoris[J]. China Biotechnology, 2013, 33(3): 74-79.