Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 47-53    DOI: 10.13523/j.cb.20140808
    
Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023
YUE Chang-wu1, LI Yuan-yuan1, LV Yu-hong1, WANG Miao1, SHAO Mei-yun1, LIU Ming-hao2, HUANG Ying2
1. Guizhou Key Laboratory of Microbial Resources & Drug Development, Zunyi Medical College, Zunyi 563003, China;
2. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML   PDF(737KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A predicted chitosanase was cloned from a fosmid genomic library of Streptomyces olivaceus strain FXJ 7.023 by PCR. The coding fragment of 885 bp encodes of 295 amino acids was fused to the expression vector pET32a (+) and transformed into Escherischia coli strains BL21 (DE3) plysS. A novel fusion protein with molecular weight of 50.3 kDa was obtained by induced the engineered strain with 1mmol/L IPTG under 18℃ and purified with the affinity chromatography of Ni2+-NTA. The recombinant chitosanase showed multifunctional catalytic activity of hydrolyze colloidal chitosan and carboxymethylcellulose with the maximal catalytic activity of 3.673U/mg and 1.302U/mg respectively. Due to it has multifunctional catalytic activity, such protein may have a potential application for the recycling of the carbohydrates and sugars in the waste.



Key wordsChitosanase      Marine streptomycete      Heterologous expression      Biocatalysis     
Received: 12 June 2014      Published: 25 August 2014
ZTFLH:  Q786  
Fund:  

This work was supported by The National Basic Research Program of China (2011CB808800), The National Nature Science Foundation of China (31160004), China Ocean Mineral Resources R & D Association (DY125-15-R-02), The Science and Technology Foundation of Guizhou Province [(2010)2156] and [(2012)2348].

Cite this article:

YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023. China Biotechnology, 2014, 34(8): 47-53.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140808     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/47


[1] Zhu X F, Tan H Q, Zhu C, et al. Cloning and overexpression of a new chitosanase gene from Penicillium sp. D-1. AMB Express, 2013, 2(1):13.

[2] Thadathil N, Velappan S P. Recent developments in chitosanase research and its biotechnological applications: A review. Food Chem, 2014, 150:392-399.

[3] Zhang J, Sun Y.Molecular cloning, expression and characterization of a chitosanase from Microbacterium sp. Biotechnol Lett, 2007, 29(8):1221-1225.

[4] Saito A, Ooya T, Miyatsuchi D, et al. Molecular characterization and antifungal activity of a family 46 chitosanase from Amycolatopsis sp. CsO-2. FEMS Microbiol Lett, 2009, 293(1):79-84.

[5] Jiang, X, Chen D, Chen L, et al. Purification, characterization and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydrate Research, 2012, 355:40-44.

[6] Heggset E B, Tuveng T R, Hoell I A, et al. Mode of action of a family 75 chitosanase from Streptomyces avermitilis. Biomacromolecules, 2012, 13(6):1733-1741.

[7] Lacombe-Harvey M E, Fortin M, Ohnuma T, et al. A highly conserved arginine residue of the chitosanase from Streptomyces sp. N174 is involved both in catalysis and substrate binding.BMC Biochem, 2013, 14:23.

[8] Takasuka T E, Bianchetti C M, Tobimatsu Y, et al.Structure-guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from Streptomyces sp. SirexAA-E.Proteins. DOI:10.1002/prot.24491.

[9] Somashekar D, Joseph R. Chitosanases properties and applications: A review. Bioresource Technology, 1996, 55(1):35-45.

[10] Kouzai Y, Mochizuki S, Saito A, et al.Expression of a bacterial chitosanase in rice plants improves disease resistance to the rice blast fungus Magnaporthe oryzae. Plant Cell Reports, 2012, 31(4):629-636.

[11] Zhang H, Sang Q, Zhang W. Statistical optimization of chitosanase production by Aspergillus sp. QD-2 in submerged fermentation. Annals of Microbiology, 2012, 62(1):193-201.

[12] Wang S L, Tseng W N, Liang T W. Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegradation, 2011, 22(5):939-948.

[13] Shirling E B, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol, 1966, 16:3313-3340.

[14] Sambrook J, Russel D W. Molecular Cloning. 3rd ed. New York:Cold Spring Harbor Laboratory Press, 2001.

[15] Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.

[16] Larkin M A, Blackshields G, Brown N P, et al.ClustalW and ClustalX version 2.0. Bioinformatics, 2007, 23(21):2947-2948.

[17] Tamura K, Stecher G, Peterson D, et al. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30: 2725-2729.

[18] Petersen T N, Brunak S, von Heijne G, et al. Signal P4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8:785-786.

[19] Marchler-Bauer A, Zheng C, Chitsaz F, et al.CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res, 2013, 41:348-352.

[20] Wilkins M R, Gasteiger E, Bairoch A, et al.Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112:531-552.

[21] Cantarel B L, Coutinho P M, Rancurel C, et al.The carbohydrate active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 2009, 37:233-238.

[22] Marcotte E M, Monzingo A F, Ernst S R, et al. X-ray structure of an anti-fungal chitosanase from Streptomyces N174. Nat Struct Biol, 1996, 3(2):155-162.

[23] Monzingo A F, Marcotte E M, Hart P J, et al.Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat Struct Biol, 1996, 3(2):133-140.

[24] Robertus J D, Monzingo A F, Marcotte E M, et al. Structural analysis shows five glycohydrolase families diverged from a common ancestor. J Exp Zool, 1998, 282(1-2):127-132.

[25] Fukamizo T. Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci, 2000, 1(1):105-124.

[1] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[2] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[3] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[4] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[5] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[6] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[7] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[8] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[9] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[10] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[11] KE Xia, DING Guan-jun, SUN Jun, Wang Lu, ZHENG Yu-guo. Vitamin D3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis[J]. China Biotechnology, 2016, 36(5): 89-96.
[12] CHENG Cai-hong, DU Ting, CHEN Ke-quan, LI Yan. Recombinant Expression of ε-Lysine Acylase from Streptomyces mobaraensis for Synthesis of Nε-lauroyl-L-lysine[J]. China Biotechnology, 2016, 36(2): 62-67.
[13] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[14] TAO Wen-na, XIA Li-qiu, DING Xue-zhi, TANG Ying. Cloning and Function Study of amtS Gene from Saccharopolyspora spinosa[J]. China Biotechnology, 2015, 35(2): 25-30.
[15] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.