Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (11): 1-6    DOI: 10.13523/j.cb.20161101
    
The Transcriptional Regulation of Ca2+ Channel Mediated by Myocardin in H9C2 Cell
DAI Yu huan1,2, XU Yao1, LUO Ying1, DAI Yang1, SHI Wei lin1, XU Yao1
1. Biomedical Institute, Wuhan University of Science and Technology, Wuhan 430065, China;
2. Wuhan Puren Hospital, Wuhan 430080, China
Download: HTML   PDF(790KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To investigate the effect of transcription factor Myocardin on the transcriptional regulation of L calcium channel Cav1.2 and its molecular mechanism in the process of maintaining normal structure and function of the heart. Methods:Cardiomyocyte membrane Ca2+ current is detected by electrophysiological patch clamp technique. Real-time PCR is used to detect the level of the LTCC mRNA,The protein expression level of LTCC is detected by Western blotting, Using luciferase assay to detect the promoter activity of Cav1.2 and the binding site of Myocardin on Cav1.2 gene promoter. Results:The activation of LTCC Cav1.2 gene mediated by Myocardin up-regulate the cardiomyocyte membrane Ca2+ current. Myocardin activates LTCC Cav1.2 gene transcription and expression depending on its CarGbox on the promoter. Conclusions:Myocardin activates LTCC Cav1.2 gene transcription and expression by binding on the CarGbox of its promoter, which promote the transportion of calcium ion channel protein from nucleus to membrane, enhance the flow of Ca2+, and up-regulate the cardiomyocyte membrane Ca2+ current.



Key wordsMutagenesis      Epigenetic regulation      LTCC      Myocardin      Lentivirus package     
Received: 09 May 2016      Published: 25 November 2016
ZTFLH:  Q786  
Cite this article:

DAI Yu huan, XU Yao, LUO Ying, DAI Yang, SHI Wei lin, XU Yao. The Transcriptional Regulation of Ca2+ Channel Mediated by Myocardin in H9C2 Cell. China Biotechnology, 2016, 36(11): 1-6.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161101     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I11/1

[1] Richard S, Leclercq F, Lemaire S, et al. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovascular Research, 1998, 37(2):300-311.
[2] Cheng H, Wang S Q. Calcium signaling between sarcolemmal calcium channels and ryanodine receptors in heart cells. Frontiers in Bioscience A Journal & Virtual Library, 2002, 7(1-3):d1867-878.
[3] Wang S Q, Song L S, Lakatta E G, et al. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature, 2001, 410(6828):592-596.
[4] Wang D, Chang P S, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 2001, 105(7):851-862.
[5] Huang J, Parmacek M S. Myocardin is required for cardiomyocyte survival and maintenance of heart function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(44):18734-18739.
[6] Lutfullin I Y, Kim Z F, Bilalova R R, et al. A 24-hour ambulatory ecg monitoring in assessment of qt interval duration and dispersion in rowers with physiological myocardial hypertrophy. Biology of Sport, 2013, 30(4):237-241.
[7] Xing W, Zhang T C, Cao D, et al. Myocardin induces cardiomyocyte hypertrophy. Circulation Research, 2006, 98(8):1089-1097.
[8] Liao X H, Wang N, Liu Q X, et al. Myocardin-related transcription factor-A induces cardiomyocyte hypertrophy. Iubmb Life, 2011, 63(1):54-61.
[9] Yan X, Gao S, Ming T, et al. Adenylyl cyclase/cAMP-PKA-mediated phosphorylation of basal L-type Ca2+, channels in mouse embryonic ventricular myocytes. Cell Calcium, 2011, 50(50):433-443.
[10] Chik C L, Li B, Ogiwara T, et al. PACAP modulates L-type Ca2+ channel currents in vascular smooth muscle cells:involvement of PKC and PKA. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 1996, 10(11):1310-1317.
[11] Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006, 38(2):228-233.
[12] Matsa E, Dixon J E, Medway C, et al. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. European Heart Journal, 2014, 35(16):1078-1087.

[1] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[6] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[7] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[8] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[9] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[10] TIAN Shu-cui, NIU Yan-ning, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. The Streptoverticillium mobaraense Mutagenesis Using Atmospheric Pressure Plasma at Room Temperature (ARTP) Method[J]. China Biotechnology, 2016, 36(9): 47-53.
[11] JI Mei-ping, PANG Yan-bo, FU Li-li, NA Ri, GUO Jiu-feng, WANG Zhi-yong. Study Progress and Prospect on γ-poly Glutamic Acid Genetic Engineering[J]. China Biotechnology, 2016, 36(6): 107-118.
[12] ZHANG Ying-tong, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Yong-quan, CHEN Wei. Isolation and Characterization of Mucor circinelloides pyrG Negative Mutant Strain[J]. China Biotechnology, 2016, 36(3): 38-42.
[13] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[14] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[15] GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis[J]. China Biotechnology, 2015, 35(8): 83-89.