Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 78-83    DOI: 10.13523/j.cb.20190611
研究报告     
外泌体与自噬体相互关系研究进展 *
刘艳1,2,戴鹏2,朱运峰1,3,**()
1 北京交通大学生命科学与生物工程研究院 北京 100044
2 河南省华之源生物技术有限公司 郑州 450000
3 解放军总医院肿瘤中心实验室 北京 100853
Research Progress of Relationship between Exosomes and Autophagosomes
Yan LIU1,2,Peng DAI2,Yun-feng ZHU1,3,**()
1 College of Life Sciences and Bioengineering,Beijing Jiaotong University,Beijing 100044,China
2 Henan Province OriginBio Biotechnology Co. Ltd., Zhengzhou 450000, China
3 The Key Laboratory of Tumor Center in PLA General Hospital, Beijing 100853, China
 全文: PDF(488 KB)   HTML
摘要:

真核细胞内膜系统由细胞内相互联系的膜状细胞器组成,包括外泌体的生成和自噬过程,对应激反应和维持细胞内稳态起着重要作用。外泌体是含有蛋白质与核酸内容物的多泡体分泌到体外形成的胞外囊泡,而自噬是溶酶体依赖性的降解和循环再利用的过程。研究发现,外泌体的生成和自噬之间有着共同的分子机制,二者存在实质性的交互通信。对外泌体的生成和自噬的过程,包括二者与溶酶体之间的关系进行综述。

关键词: 自噬外泌体溶酶体胞外囊泡    
Abstract:

The eukaryotic intima system consists of intercellular membranous organelles, including the formation of exosomes and autophagy, which play an important role in stress response and maintenance of cell homeostasis. Exosomes are extracellular vesicles secreted into the body by multivesicular bodies containing contents of proteins and nuclear acids, while autophagy is a process of lysosomal-dependent degradation and recycling. There is a common molecular mechanism between the formation of exosomes and autophagy, and substantial interaction between them were founded.The formation of exosomes and the process of autophagy was reviewed, including the relationship between the two and lysosomes.

Key words: Autophagy    Exosomes    Lysosomes    Extracellular vesicles
收稿日期: 2018-11-13 出版日期: 2019-07-12
ZTFLH:  Q28  
基金资助: * 国家863计划资助项目(2011AA02A110)
通讯作者: 朱运峰     E-mail: zhuyf2004@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘艳
戴鹏
朱运峰

引用本文:

刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.

Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes. China Biotechnology, 2019, 39(6): 78-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190611        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/78

图1  外泌体和自噬体相互关系简图[12]
[1] Pan B T, Johnstone R M . Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 1983,33(3):967-978.
doi: 10.1016/0092-8674(83)90040-5
[2] Claude-Taupin A, Jia J, Mudd M , et al. Autophagy’s secret life: secretion instead of degradation. Essays Biochem, 2017,61(6):637-647.
doi: 10.1042/EBC20170024
[3] Cadwell K, Debnath J . Beyond self-eating: the control of nonautophagic functions and signaling pathways by autophagyrelated proteins. J Cell Biol, 2018,217(3):813-822.
doi: 10.1083/jcb.201706157
[4] Baixauli F, López-Otin C, Mittelbrunn M . Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol, 2014,5:403.
[5] Ojha C R, Lapierre J, Rodriguez M , et al. Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: new insights for diagnosis and therapeutic applications. Viruses, 2017,9(7):176.
doi: 10.3390/v9070176
[6] Scott C C, Vacca F, Gruenberg J . Endosome maturation, transport and functions. Semin Cell Dev Biol, 2014,31:2-10.
doi: 10.1016/j.semcdb.2014.03.034
[7] Hessvik N P, Llorente A . Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018,75(2):193-208.
doi: 10.1007/s00018-017-2595-9
[8] Yáñez-Mó M, Siljander P R, Andreu Z , et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015,4(1):27066.
doi: 10.3402/jev.v4.27066
[9] Hurley J H . ESCRTs are everywhere. EMBO J, 2015,34(19):2398-2407.
doi: 10.15252/embj.201592484
[10] Colombo M, Moita C, van Niel G , et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013,126(Pt 24):5553-5565.
doi: 10.1242/jcs.128868
[11] Trajkovic K, Hsu C, Chiantia S , et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008,319(5867):1244-1247.
doi: 10.1126/science.1153124
[12] Xu J, Camfield R, Gorski S M . The interplay between exosomes and autoph-agy - partners in crime. J Cell Sci, 2018,131(15):215210.
doi: 10.1242/jcs.215210
[13] Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C , et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol, 2014,28:3-13.
doi: 10.1016/j.semcancer.2014.04.009
[14] Janas T, Janas M , Sapo$\acute{n}$ K , et al. Mechanisms of RNA loading into exosomes. FEBS Lett, 2015,89(13):1391-1398.
[15] Andreu Z, Yáñez-Mó M . Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014,5:442.
[16] Smith V L, Jackson L, Schorey J S . Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol, 2015,195(6):2722-2730.
doi: 10.4049/jimmunol.1403186
[17] Sahu R, Kaushik S, Clement C C , et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell, 2011,20(1):131-139.
doi: 10.1016/j.devcel.2010.12.003
[18] Edgar J R, Manna P T, Nishimura S , et al. Tetherin is an exosomal tether. eLife, 2016,5:e17180.
doi: 10.7554/eLife.17180
[19] Hoshino A, Costa-Silva B, Shen T L , et al. Tumour exosome integrins determine organotropic metastasis. Nature, 2015,527(7578):329-335.
[20] Kamerkar S, Lebleu V S, Sugimoto H , et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017,546(7659):498-503.
[21] Christianson H C, Svensson K J, Van Kuppevelt T H , et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA, 2013,110(43):17380-17385.
doi: 10.1073/pnas.1304266110
[22] Mulcahy L A, Pink R C, Carter D R . Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 2014,3(1):24641.
doi: 10.3402/jev.v3.24641
[23] Heusermann W, Hean J, Trojer D , et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol, 2016,213(2):173-184.
doi: 10.1083/jcb.201506084
[24] Klionsky D J, Emr S D . Autophagy as a regulated pathway of cellular degradation. Science, 2000,290(5497):1717-1721.
doi: 10.1126/science.290.5497.1717
[25] Galluzzi L, Baehrecke E H, Ballabio A , et al. Molecular definitions of autophagy and related processes. EMBO J, 2017,36(13):1811-1836.
doi: 10.15252/embj.201796697
[26] Tsukada M, Ohsumi Y . Isolation and characterization of autophagydefective mutants of saccharomyces cerevisiae. FEBS Lett, 1993,333(1-2):169-174.
doi: 10.1016/0014-5793(93)80398-E
[27] Park J M, Jung C H, Seo M , et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy, 2016,12(3):547-564.
doi: 10.1080/15548627.2016.1140293
[28] Matsuura A, Tsukada M, Wada Y , et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997,192(2):245-250.
doi: 10.1016/S0378-1119(97)00084-X
[29] Ichimura Y, Kirisako T, Takao T , et al. A ubiquitinlike system mediates protein lipidation. Nature, 2000,408(6811):488-492.
[30] Zhang M, Kenny S J, Ge L , et al. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife, 2015,4:1463.
[31] Deretic V, Jiang S, Dupont N . Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol, 2012,22(8):397-406.
doi: 10.1016/j.tcb.2012.04.008
[32] Florey O, Kim S E, Sandoval C P , et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol, 2011,13(11):1335-1343.
[33] Martinez J, Almendinger J, Oberst A , et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA, 2011,108(42):17396-17401.
doi: 10.1073/pnas.1113421108
[34] Fletcher K, Ulferts R, Jacquin E , et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J, 2018,37(4):e97840.
doi: 10.15252/embj.201797840
[35] Codogno P, Mehrpour M, Proikas-Cezanne T . Canonical and non-canonical autophagy: variations on a common theme of self-eating. Nat Rev Mol Cell Biol, 2011,13(1):7-12.
[36] Jacquin E, Leclerc-Mercier S, Judon C , et al. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy, 2017,13(5):854-867.
doi: 10.1080/15548627.2017.1287653
[37] Tooze S A, Abada A, Elazar Z . Endocytosis and autophagy: exploitation or cooperation. Cold Spring Harbor Perspect Biol, 2014,6(5):a018358.
doi: 10.1101/cshperspect.a018358
[38] Guo H, Chitiprolu M, Roncevic L , et al. Atg5 disassociates the V1 V0 -ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell, 2017,43(6):716-730.
doi: 10.1016/j.devcel.2017.11.018
[39] Murrow L, Malhotra R, Debnath J . ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol, 2015,17(3):300-310.
[40] Martinez J, Malireddi R K, Lu Q , et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol, 2015,17(7):893-906.
[41] Liu J, Zhang Y, Liu A , et al. Distinct dasatinib-induced mechanisms of apoptotic response and exosome release in imatinib-resistant human chronic myeloid leukemia cells. Int J Mol Sci, 2016,17(4):531.
doi: 10.3390/ijms17040531
[42] Bader CA, Shandala T, Ng Y S , et al. Atg9 is required for intraluminal vesicles in amphisomes and autolysosomes. Biol Open, 2015,4(11):1345-1355.
doi: 10.1242/bio.013979
[43] Liou W, Geuze H J, Geelen M J , et al. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol, 1997,136(1):61-70.
doi: 10.1083/jcb.136.1.61
[44] Fade C M, Sánchez D, Furlán M , et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic, 2008,9(2):230-250.
[45] Villarroya-Beltri C, Baixauli F, Mittelbrunn M , et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun, 2016,7:13588.
[46] Hurwitz S N, Cheerathodi M R, Nkosi D , et al. Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of Epstein-Barr virus LMP1. J Virol, 2018,92(5):e01969-17.
[47] Patel K K, Miyoshi H, Beatty W L , et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J, 2013,32(4):3130-3144.
doi: 10.1038/emboj.2013.233
[48] Chen Y D, Fang Y T, Cheng Y L , et al. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep, 2017,7(1):5676.
doi: 10.1038/s41598-017-06076-4
[49] Bukong T N, Momen-Heravi F, Kodys K , et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog, 2014,10(10):e1004424.
doi: 10.1371/journal.ppat.1004424
[50] Liu Z, Zhang X, Yu Q , et al. Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun, 2014,455(3- 4):218-222.
doi: 10.1016/j.bbrc.2014.10.146
[51] Shrivastava S, Devhare P, Sujijantarat N , et al. Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway. J Virol, 2015,90(3):1387-1396.
[52] Ren H, Elgner F, Jiang B , et al. The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle. J Virol, 2016,90(13):5989-6000.
doi: 10.1128/JVI.00551-16
[53] Wang L, Tian Y, Ou J J , et al. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog, 2015,11(3):e1004764.
doi: 10.1371/journal.ppat.1004764
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[7] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[8] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[9] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[10] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[11] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[12] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[13] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[14] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[15] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.