Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (12): 105-110    DOI:
    
Neutralizing Antibodies and Antibody-based HIV-1 Vaccine Design
CAO Zhi-liang, HE Yu-xian
Institute of Pathogen Biology,Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100730,China
Download: HTML   PDF(389KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The development of a safe and effective human immunodeficiency virus-1 (HIV-1) vaccine is a critically important global health priority. Despite recent advances in our understanding of HIV-1 pathogenesis and immunology, For HIV-1, obstacles to eliciting protective neutralizing antibodies (NAbs) have often seemed insurmountable. Traditional vaccine strategies will not provide protection against HIV-1. However, recent studies show that antibodies in the sera of some HIV-1–infected individuals can neutralize diverse HIV-1 isolates. Detailed analyses of these sera provide new insights into the viral epitopes targeted by broadly reactive NAbs. The findings suggest that the natural NAb response to HIV-1 can inform future vaccine design. High-resolution structural information can reveal the atomic level architecture of the region of env bound to a Nab, and this information can be used to design better immunogens.



Key wordsHIV-1      Vaccine      Neutralizing antibody     
Received: 31 August 2010      Published: 25 December 2010
ZTFLH:  Q819  
Cite this article:

CAO Zhi-liang, HE Yu-xian. Neutralizing Antibodies and Antibody-based HIV-1 Vaccine Design. China Biotechnology, 2010, 30(12): 105-110.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I12/105

[1]   Fauci A S. 25 years of HIV. Nature, 2008, 453:289-290.
[2]   Stamatatos L, Morris L, Burton D R, et al. Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med, 2009, 15: 866-870.
[3]   Koff W C. Accelerating HIV vaccine development. Nature, 2010, 464(7286): 161-162.
[4]   Saphire E O, Parren P W, Pantophlet R, et al. Crystal structure of a neutralizing human IgG against HIV-1: A template for vaccine design. Science, 2001, 293(5532): 1155-1159.
[5]   Cinerney T L, McLain L, Armstrong S J, et al. A human IgG1 (b12) specific for the CD4 binding site of HIV-1 neutralizes by inhibiting the virus fusion entry process, but b12 Fab neutralizes by inhibiting a postfusion event.Virology, 1997, 233(2): 313-326.
[6]   Calarese D A, Scanlan C N, Zwick M B, et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science, 2003,300(5628):2065-2071.
[7]   Parker C E, Deterding L J, Braun C H, et al. Fine definition of the epitope on the gp41 glycoprotein of human immunodeficiency virus type 1 for the neutralizing monoclonal antibody 2F5. J Virol, 2001, 75:10906-10911.
[8]   Xu H, Song L, Kim M, et al. Interactions between lipids and human anti-HIV antibody 4E10 can be reduced without ablating neutralizing activity. J Virol, 2010, 84(2):1076-1088.
[9]   Stanfield R L, Gorny M W, Williams C. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure, 2004, 12(2):193-204.
[10]   Binley J M, Lybarger E A, Crooks E T. et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol,2008, 82(23):11651-11668.
[11]   Doria-Rose N A, Klein R M, Manion M M, et al. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J Virol, 2009, 83(1): 188-199.
[12]   Li Y, Svehla K, Louder M K,et al. Analysis of the neutralization specificities in polyclonal sera derived from human immunodeficiency virus type-1 infected individuals. J Virol, 2009,83(2): 1045-1059.
[13]   Sather D N. Armann J, Ching L K, et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol, 2009, 83(2): 757-769.
[14]   Simek M D, Rida W, Priddy F H, et al. HIV-1 elite neutralizers: individuals with broad and potent neutralizing activity identified using a high throughput neutralization assay together with an analytical selection algorithm. J Virol, 2009,83(14):7337-7348.
[15]   Walker L M, Phogat S K, Chan-Hui P Y, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science, 2009, 326(5950): 285-289.
[16]   Hessell A J, Poignard P, Hunter M, et al. Effective, low-titer antibody protection against low-dose repeated mucosal SHIVchallenge in macaques. Nat Med, 2009, 15:951-955.
[17]   Hessell A J, Rakasz E G, Poignard P,et al. Broadly neutralizing human anti-HIV antibody 2G12 Is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog, 2009, 5(5):e1000433.
[18]   Walker L M, Burton D R. Rationnal antibody-based HIV-1 vaccine design: current approaches and future directions. Current Opin Immunol, 2010, 22(3): 1-9.
[19]   Hammonds. J, Chen X M, Fouts T,et al. Induction of neutralizing antibodies against human immunodeficiency virus type 1 primary isolates by Gag-Env pseudovirion immunization. J Virol, 2005, 79(23):14804-14814.
[20]   Stamatatos L, Morris L, Burton D R, et al. Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med, 2009, 15: 866-870.
[21]   Corti D, Langedijk J P, Hinz A, et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS ONE, 2010, 5(1): e8805.
[22]   Li Y X, Svehla K, Louder M K, et al. Analysis of neutralization specificities in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J Virol, 2009, 83(2): 1045-1059.
[23]   Decker J M, Bibollet-Ruche F, Wei X,et al. Antigenic conservation and immunogenicity of the HIV coreceptor binging site. J Exp Med, 2005, 201(9): 1407-1419.
[24]   Labrijn A F, Poignard P, Raja A, et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol, 2003, 77(19): 10557-10565.
[25]   Hessell A J, Rakasz E G, Tehrani D M, et al. Broadly neutralizing monoclonal antibodies 2F5 and 4E10, directed against the human immunodeficiency virus type 1 (HIV-1) gp41 membrane proximal external region (MPER). Protect against SHIVBa-L mucosal challenge. J Virol, 2010, 84(3): 1302-1313.
[26]   Verkoczy L, Diaz M, Holl T M, et al. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc Natl Acad Sci, 2010, 107(33): 181-186.
[27]   Alam S M, Morelli M, Dennison S M, et al. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci, 2009, 106: 20234-20239.
[28]   Kwong P D, Mascola J R, Nabel G J. Mining the B cell repertoire for broadly neutralizing monoclonal antibodies to HIV-1. Cell Host Microbe, 2009, 6(4):292-294.
[29]   Wu X, Yang Z Y, Mascola J R, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science, 2010, 329(5993): 856-861.
[30]   Zhou T, Georgiev I, Kwong P D, et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science, 2010, 329(5993): 811-817.
[31]   Liu J, Bartesaghi A, Borgnia M J, et al. Molecular architecture of native HIV-1 gp120 trimers. Nature, 2008, 455:109-113.
[32]   Zhu P, Liu J, Bess J J, et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 2006, 441: 847-852.
[33]   Zanetti G, Briggs J A, Grunewald K, et al. Cryoelectron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog, 2006, 2: e83.
[34]   Chen L, Kwon Y D, Kwong P D, et al. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science, 2009,326(5956): 1123-1127.
[35]   Tiller T,Meffreb E, Yurasov S, et al. efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods, 2008, 329: 112-124.
[36]   Wrammert J, Smith K,Miller J, et al. Rapid cloning of high-affinity human monoclonal antibodies agsinst influenza virus. Nature, 2008, 453: 667-671.
[1] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[2] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[3] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[4] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[5] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[6] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[7] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[8] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[9] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[10] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[11] Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant[J]. China Biotechnology, 2019, 39(5): 114-119.
[12] Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines[J]. China Biotechnology, 2019, 39(3): 97-104.
[13] Fu-lan GAO,Jia-long QI,Cong-yan SHU,Hang-hang XIE,Wei-wei HUANG,Cun-bao LIU,Xu YANG,Wen-jia SUN,Hong-mei BAI,Yan-bing MA. Efficient Secretory Expression of Optimized Mouse Interleukin-33 Gene in Mammalian Cells[J]. China Biotechnology, 2019, 39(3): 46-55.
[14] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[15] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.