Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (5): 114-119    DOI: 10.13523/j.cb.20190513
    
Classification and Mechanism of Immune Adjuvant
Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU()
Zhejiang Sci-Tech University College of Life Sciencies and Medicine, Hangzhou 310018,China
Download: HTML   PDF(426KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Although new vaccines such as DNA vaccines, recombinant vaccines, and subunit vaccines obtained through modern biotechnology have been improved in safety compared to conventional vaccines, they also have certain defects. One of the biggest defects is that the immunogenicity is often low, and the efficacy of the immune body cannot be achieved. It is necessary to add an adjuvant or a carrier to improve the immune efficacy. Therefore, it is very important to develop an effective, safe and effective adjuvant to enhance the specific immune response. With the continuous development of adjuvants, aluminum adjuvant, oil emulsion adjuvant, microbial adjuvant, propolis adjuvant, levamisole adjuvant, liposome adjuvant, traditional Chinese medicine adjuvant and peptide adjuvant have been used as immunoadjuvants and its mechanism of action has also been studied more and more thoroughly. Through animal immunization experiments, it was found that peptide immunoadjuvant not only enhances specific immune response, but also has the effect of immune enhancer, and is easy to obtain, easy to transport and preserve, and has high safety, which may be a major direction of future adjuvant research.



Key wordsVaccine      Immune adjuvant      Mechanism of action     
Received: 30 September 2018      Published: 04 June 2019
ZTFLH:  Q819  
Corresponding Authors: Jian-hong SHU     E-mail: shujianhong@zstu.edu.cn
Cite this article:

Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant. China Biotechnology, 2019, 39(5): 114-119.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190513     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I5/114

[1]   Dowling J K, Mansell A . Toll-likereceptors:the swiss army knifeof immunity and vaccine development. ClinTransl Immunology, 2016,5(5):85-86.
[2]   臧力铭, 胡松华 . 疫苗免疫佐剂及其研究进展. 黑龙江畜牧兽医, 2004,46(3):61-62.
[2]   Yan L M, Hu S H . Vaccine immune adjuvant and its research progress. Heilongjiang Animal Husbandry and Veterinary, 2004,46(3):61-62.
[ ]   SHAKYA A K, CHOWDHURY M Y, TAO W , et al. Mucosal vaccine delivery:current state and a pediatric perspective. J Control Release, 2016,240(10):394-413.
doi: 10.1016/j.jconrel.2016.02.014
[3]   Bergmann-Leitner E S, Leitner W W . Adjuvants in the driver’s seat:how magnitude,type,fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators. Vaccines(Basel), 2014,2(2):252-296.
[4]   Schulze K, Ebensen T, Babiuk L A , et al. Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticlebased vaccine formulation stimulates protective immune responses in mice. Nanomedicine, 2017,13(7):2169-2178.
doi: 10.1016/j.nano.2017.05.012
[5]   吴宣, 杨泽林, 岳华 , 等. 免疫佐剂的研究进展. 养禽与禽病防治, 2003,21(9):2-4.
[5]   Wu X, Yang Z L, Yue H , et al. Research progress of immunological adjuvants. Prevention and Control of Poultry and Poultry Diseases, 2003,21(9):2-4.
[6]   Heydenreich B, Bellinghausen I, Lund L , et al. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids-differences in vivo and in vitro. Clin Exp Immunol, 2014,176(3):310-319.
doi: 10.1111/cei.12294
[7]   Miki H, Nakahashi-Oda C, Sumida T , et al. Involvement of CD300a phosphatidylserine immunoreceptor in aluminum salt adjuvantInduced Th2 responses. J Immunol, 2015,194(11):5069-5076.
doi: 10.4049/jimmunol.1402915
[8]   Aikawa K, Matsumoto K, Uds H , et al. Prolonged release of drug from O/W emulsion and residence in rat nasal cavity. Pharm Dev Technol, 1998,3(4):461-469.
doi: 10.3109/10837459809028627
[9]   Eisenbarth S C, Colegio O R, O’Connor W , et al. Calcial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminum adjuvant. Nature, 2008,453(7198):1122-1126.
[10]   Ljutic B, Ochs M, Messham B , et al. Formulation, stability and immunogenicity of a trivalent pneumococcal proteinvaccine formulated with aluminumsalt adjuvants. Vaccine, 2012,30(19):2981-2988.
doi: 10.1016/j.vaccine.2012.02.038
[11]   Li H, Willingham S B, Ting J P , et al. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol, 2008,181(1):17-21.
doi: 10.4049/jimmunol.181.1.17
[12]   Qing H, Alaina M, Tulin M , et al. Calcium phos phate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diag Lab Immun, 2002,9(5):1021-1024.
[13]   Baker J A, Lewis E L, Byland L M , et al. Mucosal vaccination promotes clearance of Streptococcus agalactiae vaginal colonization. Vaccine, 2017,35(9):1273-1280.
doi: 10.1016/j.vaccine.2017.01.029
[14]   何海蓉, 姜平, 梅忠 . 不同来源白油佐剂质量分析及其制备的禽流感疫苗安全性与免疫效力研究. 中国家禽, 2009,31(22):15-18.
[14]   He H R, Jiang P, Mei Z . Quality analysis of different sources of white oil adjuvant and its safety and immune efficacy of avian influenza vaccine prepared. China Avian, 2009,31(22):15-18.
[15]   Liu K F, Liu X R, Li G L , et al. Oral administration of Lactococcus lactis——expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice. Immunol Lett, 2016,174(1):28-36.
doi: 10.1016/j.imlet.2016.04.008
[16]   Zhang X, Hu S, Du X , et al. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development.[J] Microbiol Immunol Infect. 2016,49(6):851-858.
doi: 10.1016/j.jmii.2014.11.009
[17]   Lofano G, Mancini F , SalvatoRE G,et al.Oilin-emulsion MF59 increases germinal center B cell differentiation and persistence in response to vaccination. J Immunol, 2015,195(4):1617-1627.
doi: 10.4049/jimmunol.1402604
[18]   Xue X, Ding F, Zhang Q , et al. Stability and potency of the Plasmodium falciparum MSP119/AMA1(III) chimeric vaccine candidate with Montanide ISA720 adjuvant. Vaccine, 2010,28(18):3152-3158.
doi: 10.1016/j.vaccine.2010.02.054
[19]   MOSCHOS S A, BRAMWELL V W, SOMAVA RAPU S , et al. Comparative immunomodulatory properties of a chitosanMDP adjuvant combination following intranasal or intramuscular immunization[J]. Vaccine, 2005,23(16):1923-1930.
doi: 10.1016/j.vaccine.2004.10.016
[20]   Ly N P, Litonjua A, Gold D R , et al. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy,asthma,and obesity. J Allergy Clin Immunol, 2011,127(5):1087-1094.
doi: 10.1016/j.jaci.2011.02.015
[21]   Agmon Levin N, Theodor E, Segal R M , et al. Vitamin D in systemic and organ-specific autoimmune diseases. Clin Rev Allergy Immunol, 2013,45(2):256-266.
doi: 10.1007/s12016-012-8342-y
[22]   Wegienka G, Havestad S, Zoratti E M , et al. Association between vitamin D levels and allergy-related outcomes vary by race and other factors. J Allergy Clin Immunol, 2015,136(5):1309-1314.
doi: 10.1016/j.jaci.2015.04.017
[23]   王雪鹏, 刘悦竹, 陈蕾 , 等. 鸡痘蜂胶佐剂灭活疫苗的研制. 中国兽医杂志, 2005,41(4):52-53.
[23]   Wang X P, Liu Y Z, Chen L , et al. Development of inactivated vaccine for chicken pox propolis adjuvant. Chinese Journal of Veterinary Medicine, 2005,41(4):52-53.
[24]   Sforcin J M . Propolis and the immune syetem. J Ethnopharm Acol, 2007,113(1):1-14.
doi: 10.1016/j.jep.2007.05.012
[25]   Moschos S A, Bramwell V W, Somavarapu S , et al. Comparative immunomodulatory properties of a chitosan MDP adjuvant combination following intranasal or intramuscular immunization. Vaccine, 2005,23(16):1923-1930.
doi: 10.1016/j.vaccine.2004.10.016
[26]   Allison A C . Liposomes as immunological adjuvants. Nature, 1974,105(2):252254.
[27]   何敏, 符华林, 李英伦 . 兽用脂质体制剂的研究进展. 中国兽药杂志, 2004,38(9):3337.
[27]   He M, Fu H L, Li Y L . Research progress in veterinary liposomal preparations. Chinese Journal of Veterinary Drug, 2004,38(9):3337.
[28]   Brewer J M, Tetley L, Richmond J , et al. Lipod vesicle size determines the Th1 or Th2 response to entrappen antigen. Immunol, 1998,161(8):4000-4007.
[29]   Highton A J, Kojarunchitt T, Girardin A , et al. Chitosan hydrogel vaccine generates protective CD8 T cell memory against mouse melanoma. Immunol Cell Biol, 2015,93(7):634-640.
doi: 10.1038/icb.2015.14
[30]   Li Y, Xie F, Chen J , et al. Increased humoral immune responses of pigs to foot-and-mouth disease vaccine supplemented with ginseng stem and leaf saponins. Chem Biodivers, 2012,9(10):2225-2235.
doi: 10.1002/cbdv.v9.10
[31]   Wang M, Yang R, Zhang L , et al. Sulfated glucan can improve the immune efficacy of Newcastle disease vaccine in chicken. Int J Biol Macromol, 2014,70(9):193-198.
doi: 10.1016/j.ijbiomac.2014.05.048
[32]   Guo L, Liu J, Hu Y , et al. Astragalus polysaccharide and sulfated epimedium polysaccharide synergistically resist the immunosuppression. Carbohydr Polym, 2012,90(2):1055-1060.
doi: 10.1016/j.carbpol.2012.06.042
[33]   马兴铭, 赵进昌 . 中药多糖对小鼠巨噬细胞功能影响的比较. 甘肃中医学院学报, 2000,17(4):11-12.
[33]   Ma X M, Zhao J C . Comparison of effects of traditional Chinese medicine polysaccharide on mouse macrophage function. Journal of Gansu College of Traditional Chinese Medicine, 2000,17(4):11-12.
[34]   魏恒, 李娟娟 . 中药免疫增强剂在养鸡生产中的应用研究进展. 山西农业科学, 2018,46(11):1971-1974.
[34]   Wei H, Li J J . Advances in the application of traditional Chinese medicine immunopotentiators in chicken production. Shanxi Agricultural Science, 2018,46(11):1971-1974.
[35]   Gordon D, Kelley P, Heinzel S , et al . Immunogenicity and safety of AdvaxTM, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen:A randomized controlled Phase 1 study. Vaccine, 2014,32(48):6469-6477.
doi: 10.1016/j.vaccine.2014.09.034
[36]   Liu M, Machova E, Nescakova Z , et al. Vaccination with mannan protects mice against systemic aspergillosis. Med Mycol, 2012,50(8):818-828.
doi: 10.3109/13693786.2012.683539
[37]   Gupta RK, Chang A C, Griffin P , et al. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeles tetanus toxoid. Vaccine, 1996,14(15):1412-1416.
doi: 10.1016/S0264-410X(96)00073-4
[38]   Gao S, Li D, Liu Y , et al. Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice. Int Immunopharmacol, 2015,24(1):140-145.
doi: 10.1016/j.intimp.2014.10.032
[39]   Mosca F, Tritto E, Muzzi A , et al. Molecular and celluar signatures of human vaccine adjuvants. Proc Natl Acad Sci USA, 2008,105(30):10501-10506.
doi: 10.1073/pnas.0804699105
[40]   Goto N, Akama K . Histopathological studies of reactions in mice injected with aluminum-adsorbed tetanus toxoid. Microbiol Immunol, 1982,26(12):1121-1132.
doi: 10.1111/mim.1982.26.issue-12
[41]   Caproni E, Tritto E, Cortese M , et al. MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action. Immunol, 2012,188(7):3088-3098.
doi: 10.4049/jimmunol.1101764
[42]   刘轶博, 耿兴超, 汪巨峰 , 等. 免疫佐剂作用机制研究新进展. 中国新药杂志, 2015,24(20):2324-2329.
[42]   Liu Y B, Gan X C, Wang J F , et al. Recent advances in the mechanism of immunoadjuvants. Chinese Journal of New Drugs, 2015,24(20):2324-2329.
[43]   Seuber T A, Monaci E, Pizza M , et al. The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. Immunol, 2008,180(8):5402-5412.
doi: 10.4049/jimmunol.180.8.5402
[44]   周洋, 耿兴超, 汪巨峰 , 等. 疫苗佐剂最新进展. 中国新药杂志, 2013,22(1):34-42.
[44]   Zhou Y, Yan X C, Wang J F , et al. Recent advances in vaccine adjuvants. Chinese Journal of New Drugs, 2013,22(1):34-42.
[45]   Li H, Nookala S, Re F . Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. Immunol, 2007,178(8):5271-5276.
doi: 10.4049/jimmunol.178.8.5271
[46]   侯立婷, 陈瑾, 乔绪稳 , 等. 猪O型口蹄疫病毒细菌样颗粒疫苗的制备与免疫原性鉴定. 生物工程学报, 2017,33(2):217-227.
[46]   Hou L T, Chen J, Qiao X W , et al. Design and immunogenicity evaluation for the bacteria-like particle vaccine against swine type O foot-and-mouth disease virus. Chin J Biotech, 2017,33(2):217-227.
[47]   Qin T, Chen J, Wang D , et al. Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity. Carbohydr Polym, 2013,92(1):645-650.
doi: 10.1016/j.carbpol.2012.08.097
[1] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[2] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[3] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[4] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[5] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[6] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[7] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[8] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[9] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[10] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[11] Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines[J]. China Biotechnology, 2019, 39(3): 97-104.
[12] Fu-lan GAO,Jia-long QI,Cong-yan SHU,Hang-hang XIE,Wei-wei HUANG,Cun-bao LIU,Xu YANG,Wen-jia SUN,Hong-mei BAI,Yan-bing MA. Efficient Secretory Expression of Optimized Mouse Interleukin-33 Gene in Mammalian Cells[J]. China Biotechnology, 2019, 39(3): 46-55.
[13] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[14] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.
[15] GUO Le,WANG Shu-e,HE Meng,ZHANG Fan,LIU Hong-peng,LIU Kun-mei. Expression and Immunological Properties of Multivalent Epitope Vaccine CWAE Against Helicobacter pylori[J]. China Biotechnology, 2019, 39(12): 1-8.