Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 130-140    DOI: 10.13523/j.cb.2208021
    
Research Progress on the Function of Pro-apoptotic Protein BAK and Its Role in Virus Infection
XU Wei-min,DENG Xin,WU Rui**()
Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, China
Download: HTML   PDF(1982KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

BAK protein, a member of the BCL-2 family, is a key protein in the apoptosis pathway. It is activated under the stimulation of apoptotic signals, and after clustering on mitochondria, induces the release of cytochrome c and other pro-apoptotic substances, amplifies apoptosis signals through caspase cascade reaction, and finally promotes cell death. At present, the role of BAK in the apoptosis escape of cancer cells and the activation of intracellular inflammatory response has been confirmed, but the mechanism of action between viruses and other pathogens and BAK, the activation process of intracellular apoptosis and inflammatory pathways are less studied. Therefore, in this paper, the structure and function of BAK protein and the related pathways mediated by BAK are introduced, and the progress of its role in the study of virus infection is analyzed, in order to provide some theoretical basis for the in-depth study of the pro-apoptotic protein BAK in virus infection.



Key wordsPro-apoptotic protein      BAK      Apoptosis      BCL protein family      Viral infection     
Received: 15 August 2022      Published: 31 March 2023
ZTFLH:  Q946.1  
Corresponding Authors: **Rui WU     E-mail: wurui1977@163.com
Cite this article:

XU Wei-min, DENG Xin, WU Rui. Research Progress on the Function of Pro-apoptotic Protein BAK and Its Role in Virus Infection. China Biotechnology, 2023, 43(2/3): 130-140.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2208021     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/130

Fig.1 Structure of BAK protein (image made by PyMol Protein Structure Prediction software)
Fig.2 BAK protein activation form
Fig.3 The expression regulation mechanism of BAK
病毒类型 感染病毒后对BAK的影响
腺病毒(ADV) ADV通过合成自身E1B 19K蛋白,干扰宿主蛋白的合成,且可以特异性集合BAK,抑制其激活和聚集,减少了细胞凋亡和自身免疫情况,以达到扩增自身的目的[57]
发热伴血小板减少综合征病毒
(SFTSV)
在感染SFTSV宿主后,往往引起全身性炎症,因此产生分支结果。细胞感染病毒后,病毒通过激活BAK蛋白引起细胞死亡且产生炎性因子的状况无法有效治疗,促炎大于抗炎效应,导致机体免疫功能损耗,导致病毒大量增殖;若细胞自身抗炎效应抑制了BAK激活,则会降低细胞的促炎效应,当免疫系统消除病毒后便会恢复健康[59]
塞姆利基森林病毒
(SFV)
SFV同样是利用胞内BAK诱导细胞凋亡病毒的一员,但研究发现SFV诱导的细胞凋亡主要依赖于BAK而不是BAX,这二者之间的关系也逐渐清晰,且逐步发现激活BAX更倾向于是细胞自身诱导的凋亡,而BAK更容易受到外来病原的利用而引发凋亡,这可能与二者之间的分布有关,BAK激活和聚集性比BAX更快速可能也是诱因之一[60]
水泡性口炎病毒
(VSV)
VSV感染宿主细胞后会引发强烈的炎症反应,研究发现VSV通过抑制MCL-1和BCL-XL活性,增加BAK活性从而诱导细胞凋亡,且VSV同样更倾向于诱导激活BAK而不是BAX,病毒通过自身蛋白质M的合成激活胞内游离Bid成tBid而引起BAK活化,产生后续炎症反应[61]
乙型脑炎病毒
(JEV)
JEV感染宿主神经细胞引起的炎症分为两个阶段。第一个阶段较为短暂,是病毒主要合成自身蛋白质的时期,通过将自身蛋白质NS3和NS5组合成熟后进入下一个阶段;将抗凋亡蛋白BCL-XL激活且上调表达从而抑制BAK,使细胞凋亡程度下降,导致病毒复制量增加,病毒载量提升,最后进入机体引发病毒血症[62]
Table 1 BAK in the study of virus infection
[1]   Willis S N, Fletcher J I, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007, 315(5813): 856-859.
doi: 10.1126/science.1133289 pmid: 17289999
[2]   Brooks C, Wei Q Q, Feng L P, et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(28): 11649-11654.
[3]   Vince J E, De Nardo D, Gao W Q, et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and-7 to trigger NLRP 3 inflammasome and caspase-8 driven IL-1β activation. Cell Reports, 2018, 25(9): 2339-2353.e4.
doi: 10.1016/j.celrep.2018.10.103
[4]   Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochemical and Biophysical Research Communications, 2018, 500(1): 26-34.
doi: S0006-291X(17)31321-9 pmid: 28676391
[5]   Pogmore J P, Uehling D, Andrews D W. Pharmacological targeting of executioner proteins: controlling life and death. Journal of Medicinal Chemistry, 2021, 64(9): 5276-5290.
doi: 10.1021/acs.jmedchem.0c02200 pmid: 33939407
[6]   Glab J A, Cao Z P, Puthalakath H. Bcl-2 family proteins, beyond the veil. International Review of Cell and Molecular Biology, 2020, 351: 1-22.
doi: S1937-6448(19)30120-0 pmid: 32247577
[7]   Huang K, O’Neill K L, Li J, et al. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Research, 2019, 29(11): 942-952.
doi: 10.1038/s41422-019-0231-y pmid: 31551537
[8]   Adams J M. BAX and BAK become killers without a BH3 trigger. Cell Research, 2019, 29(12): 967-968.
doi: 10.1038/s41422-019-0253-5 pmid: 31729467
[9]   Heimer S, Knoll G, Schulze-Osthoff K, et al. Raptinal bypasses BAX, BAK, and BOK for mitochondrial outer membrane permeabilization and intrinsic apoptosis. Cell Death & Disease, 2019, 10: 556.
[10]   Hockings C, Alsop A E, Fennell S C, et al. Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death & Differentiation, 2018, 25(4): 721-734.
[11]   Huska J D, Lamb H M, Hardwick J M. Overview of BCL-2 family proteins and therapeutic potentials. Methods in Molecular Biology (Clifton, N J), 2019, 1877: 1-21.
[12]   Luo X, O’Neill K L, Huang K. The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved? F1000Res, 2020, 9: 935.
doi: 10.12688/f1000research
[13]   Peña-Blanco A, García-Sáez A J. Bax, bak and beyond - mitochondrial performance in apoptosis. The FEBS Journal, 2018, 285(3): 416-431.
doi: 10.1111/febs.2018.285.issue-3
[14]   Voss A K, Strasser A. The essentials of developmental apoptosis. F1000Res, 2020, 9: 148.
doi: 10.12688/f1000research
[15]   Iyer S, Uren R T, Dengler M A, et al. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death & Disease, 2020, 11: 268.
[16]   de Torre-Minguela C, Gómez A I, Couillin I, et al. Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(8): e21757.
[17]   Zhang Y, Iqbal S, O’Leary M F N, et al. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. American Journal of Physiology Cell Physiology, 2013, 305(5): C502-C511.
doi: 10.1152/ajpcell.00058.2013
[18]   Hu L, Chen M, Chen X R, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death & Disease, 2020, 11: 281.
[19]   Flores-Romero H, Ros U, Garcia-Saez A J. Pore formation in regulated cell death. The EMBO Journal, 2020, 39(23): e105753.
[20]   Wei M C, Zong W X, Cheng E H, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517): 727-730.
doi: 10.1126/science.1059108 pmid: 11326099
[21]   Moldoveanu T, Czabotar P E. BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins. Cold Spring Harbor Perspectives in Biology, 2020, 12(4): a036319.
doi: 10.1101/cshperspect.a036319
[22]   Singh G, Moldoveanu T. Methods to probe conformational activation and mitochondrial activity of proapoptotic BAK. Methods in Molecular Biology. New York: Springer New York, 2018: 185-200.
[23]   Iyer S, Uren R T, Kluck R M. Probing BAK and BAX activation and pore assembly with cytochrome c release, limited proteolysis, and oxidant-induced linkage. Methods in Molecular Biology (Clifton, N J), 2019, 1877: 201-216.
[24]   Galluzzi L, Vanpouille-Box C. BAX and BAK at the gates of innate immunity. Trends in Cell Biology, 2018, 28(5): 343-345.
doi: S0962-8924(18)30034-5 pmid: 29555208
[25]   Li M X, Tan I K L, Ma S B, et al. BAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): 7629-7634.
[26]   Westphal D, Dewson G, Czabotar P E, et al. Molecular biology of Bax and Bak activation and action. Biochimica et Biophysica Acta, 2011, 1813(4): 521-531.
doi: 10.1016/j.bbamcr.2010.12.019 pmid: 21195116
[27]   Ye K Q, Meng W X, Sun H B, et al. Characterization of an alternative BAK-binding site for BH3 peptides. Nature Communications, 2020, 11: 3301.
doi: 10.1038/s41467-020-17074-y pmid: 32620849
[28]   McArthur K, Whitehead L W, Heddleston J M, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018, 359(6378): eaao6047.
doi: 10.1126/science.aao6047
[29]   Vila-Julià G, Granadino-Roldán J M, Perez J J, et al. Molecular determinants for the activation/inhibition of Bak protein by BH 3 peptides. Journal of Chemical Information and Modeling, 2020, 60(3): 1632-1643.
doi: 10.1021/acs.jcim.9b01047 pmid: 31944696
[30]   Dewson G, Kluck R M. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 2009, 122(Pt 16): 2801-2808.
doi: 10.1242/jcs.038166 pmid: 19795525
[31]   Dewson G, Kratina T, Sim H W, et al. To trigger apoptosis, Bak exposes its BH 3 domain and homodimerizes via BH3: groove interactions. Molecular Cell, 2008, 30(3): 369-380.
doi: 10.1016/j.molcel.2008.04.005 pmid: 18471982
[32]   Mandal T, Shin S, Aluvila S, et al. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. Scientific Reports, 2016, 6: 30763.
doi: 10.1038/srep30763 pmid: 27488021
[33]   Li K M, van Delft M F, Dewson G. Too much death can kill You: inhibiting intrinsic apoptosis to treat disease. The EMBO Journal, 2021, 40(14): e107341.
[34]   Surman D R, Xu Y, Lee M J, et al. Therapeutic synergy in esophageal cancer and mesothelioma is predicted by dynamic BH3 profiling. Molecular Cancer Therapeutics, 2021, 20(8): 1469-1480.
doi: 10.1158/1535-7163.MCT-20-0887 pmid: 34088830
[35]   Tran V H, Bartolo R, Westphal D, et al. Bak apoptotic function is not directly regulated by phosphorylation. Cell Death & Disease, 2013, 4(1): e452.
[36]   Uren R T, Iyer S, Kluck R M. Pore formation by dimeric Bak and Bax: an unusual pore? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2017, 372(1726): 20160218.
[37]   Birkinshaw R W, Iyer S, Lio D, et al. Structure of detergent-activated BAK dimers derived from the inert monomer. Molecular Cell, 2021, 81(10): 2123-2134.e5.
doi: 10.1016/j.molcel.2021.03.014 pmid: 33794146
[38]   Cuconati A, Degenhardt K, Sundararajan R, et al. Bak and Bax function to limit adenovirus replication through apoptosis induction. Journal of Virology, 2002, 76(9): 4547-4558.
pmid: 11932420
[39]   Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2020, 1866(6): 165761.
[40]   Lee E F, Grabow S, Chappaz S, et al. Physiological restraint of Bak by Bcl-xL is essential for cell survival. Genes & Development, 2016, 30(10): 1240-1250.
doi: 10.1101/gad.279414.116
[41]   Korsmeyer S J, Wei M C, Saito M, et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death & Differentiation, 2000, 7(12): 1166-1173.
[42]   Sandow J J, Tan I K, Huang A S, et al. Dynamic reconfiguration of pro-apoptotic BAK on membranes. The EMBO Journal, 2021, 40(20): e107237.
[43]   Yeganeh B, Ghavami S, Rahim M N, et al. Autophagy activation is required for influenza A virus-induced apoptosis and replication. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2018, 1865(2): 364-378.
doi: 10.1016/j.bbamcr.2017.10.014
[44]   Lin L, Zhang M, Stoilov P, et al. Developmental attenuation of neuronal apoptosis by neural-specific splicing of Bak1 microexon. Neuron, 2020, 107(6): 1180-1196.e8.
doi: S0896-6273(20)30490-6 pmid: 32710818
[45]   Imao T, Nagata S. Apaf-1- and caspase-8-independent apoptosis. Cell Death and Differentiation, 2013, 20(2): 343-352.
doi: 10.1038/cdd.2012.149 pmid: 23197294
[46]   Huang K, Zhang J J, O’Neill K L, et al. Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein bid during TRAIL-induced apoptosis. Journal of Biological Chemistry, 2016, 291(22): 11843-11851.
doi: 10.1074/jbc.M115.711051 pmid: 27053107
[47]   Simpson D S, Pang J Y, Weir A, et al. Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55(3): 423-441.e9.
doi: 10.1016/j.immuni.2022.01.003 pmid: 35139355
[48]   Chen W T, Hsu F T, Liu Y C, et al. Fluoxetine induces apoptosis through extrinsic/intrinsic pathways and inhibits ERK/NF-κB-modulated anti-apoptotic and invasive potential in hepatocellular carcinoma cells in vitro. International Journal of Molecular Sciences, 2019, 20(3): 757.
doi: 10.3390/ijms20030757
[49]   Galluzzi L, Morselli E, Kepp O, et al. Targeting p53 to mitochondria for cancer therapy. Cell Cycle, 2008, 7(13): 1949-1955.
pmid: 18642442
[50]   Nieminen A I, Eskelinen V M, Haikala H M, et al. Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): E 1839-E1848.
[51]   Zhang J, Huang K, O’Neill K L, et al. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53. Cell Death & Disease, 2016, 7(6): e2266.
[52]   Degenhardt K, Chen G H, Lindsten T, et al. BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell, 2002, 2(3): 193-203.
pmid: 12242152
[53]   Wang J J, Guo W H, Zhou H, et al. Mitochondrial p53 phosphorylation induces Bak-mediated and caspase-independent cell death. Oncotarget, 2015, 6(19): 17192-17205.
pmid: 25980443
[54]   Leu JI-Ju, George D L. Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria. Genes & Development, 2007, 21(23): 3095-3109.
doi: 10.1101/gad.1567107
[55]   Chin H S, Li M X, Tan I K L, et al. VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9: 4976.
doi: 10.1038/s41467-018-07309-4 pmid: 30478310
[56]   Dudko H V, Urban V A, Davidovskii A I, et al. Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Computational Biology and Chemistry, 2020, 85: 107203.
doi: 10.1016/j.compbiolchem.2020.107203
[57]   Sundararajan R, Cuconati A, Nelson D, et al. Tumor necrosis factor-alpha induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. The Journal of Biological Chemistry, 2001, 276(48): 45120-45127.
doi: 10.1074/jbc.M106386200
[58]   Cheng Y, Sun F, Wang L, et al. Virus-induced p38 MAPK activation facilitates viral infection. Theranostics, 2020, 10(26): 12223-12240.
doi: 10.7150/thno.50992 pmid: 33204339
[59]   Li S F, Li H, Zhang Y L, et al. SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP 3 inflammasome activation. Cell Reports, 2020, 30(13): 4370-4385.
doi: 10.1016/j.celrep.2020.02.105
[60]   Urban C, Rhême C, Maerz S, et al. Apoptosis induced by Semliki Forest virus is RNA replication dependent and mediated via Bak. Cell Death & Differentiation, 2008, 15(9): 1396-1407.
[61]   Zhong Y X, Liao Y, Fang S G, et al. Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication. PLoS One, 2012, 7(1): e30191.
doi: 10.1371/journal.pone.0030191
[62]   Suzuki T, Okamoto T, Katoh H, et al. Infection with flaviviruses requires BCLXL for cell survival. PLoS Pathogens, 2018, 14(9): e1007299.
doi: 10.1371/journal.ppat.1007299
[63]   Pearce A F, Lyles D S. Vesicular stomatitis virus induces apoptosis primarily through Bak rather than Bax by inactivating Mcl-1 and Bcl-XL. Journal of Virology, 2009, 83(18): 9102-9112.
doi: 10.1128/JVI.00436-09 pmid: 19587033
[64]   Cosentino K, Hertlein V, Jenner A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Molecular Cell, 2022, 82(5): 933-949.e9.
doi: 10.1016/j.molcel.2022.01.008 pmid: 35120587
[1] WANG Ting,LIU Kai,LI Ke-ying,CHEN Xu,REN Guang-ming,YANG Xiao-ming. Knockdown of Usp13 Promotes Palmitic Acid-induced Apoptosis in Mouse Hepatocytes[J]. China Biotechnology, 2022, 42(4): 9-16.
[2] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[3] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[4] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[5] Ye LIU,Yue PAN,Wei ZHENG,Jing HU. miR-186-5p is Expressed Highly in Ethanol-induced Cardiomyocytes and Regulates Apoptosis by Target Gene XIAP[J]. China Biotechnology, 2019, 39(5): 53-62.
[6] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[7] Xiang HUANG,Jie YANG,Pei-yan HE,Zhi-hui WU,Hui-lan ZENG,Xin-Ning WANG,Jian-wei JIANG. Molecular Mechanism of Inducing 2774-C10 Cell Apoptosis and G1/S Cell Cycle Arrest by Ethanol Extract from Elephantopus mollis H.B.K.[J]. China Biotechnology, 2018, 38(4): 17-23.
[8] DAI Li-ting, WU Zhong-nan, HUANG Xiang, YANG Jie, ZENG Hui-lan, WANG Guo-cai, JIANG Jian-wei. Molecular Mechanism of Inducing GLC-82 Cells Apoptosis by Ethanol Extract from Wedelia prostrate(Hook.et Arn.) Hemsl[J]. China Biotechnology, 2017, 37(8): 1-7.
[9] XU An-jian, LI Yan-meng, LI Si-wen, WU Shan-na, ZHANG Bei, HUANG Jian. The Effect of PHP14 Knockdown on Lung Cancer Cells Apoptosis and Its Mechanism[J]. China Biotechnology, 2017, 37(7): 12-17.
[10] LI Yan-wei, MA Yi, HAN Lei, XIAO Xing, DANG Shi-ying, WEN Tao, WANG De-hua, FAN Zhi-yong. A Preliminary Study on Fas Apoptosis Inhibitory Molecule FAIM 1 Inducing and Simple Obesity[J]. China Biotechnology, 2017, 37(6): 37-42.
[11] BAI Xin-yan, WEN Li-min, WANG Yu-jing, WANG Hai-long, XIE Jun, GUO Rui. ANKRD49 Inhibits UV-induced Apoptosis of GC-1 Cells by Up-regulating Bcl-xL[J]. China Biotechnology, 2017, 37(4): 40-47.
[12] LI Zhen-hua, LI Cui-ping, ZHANG Xiang-qiang, DAI Li-ting, TANG Meng-si, WANG Guo-cai, JIANG Jian-wei, CAO Ming-rong. EM-3 Targets Stat3 to Induce Apoptosis, G2/M Cell Cycle Arrest and Reduce the Proportion of SP Cells in Nasopharyngeal Carcinoma[J]. China Biotechnology, 2016, 36(3): 1-10.
[13] WAN Chun-hong, ZHANG Zhi, LI Sheng-na, PENG Yi-yuan, XU Liang-guo. Research Progresses on TRAF7[J]. China Biotechnology, 2016, 36(3): 93-101.
[14] ZHANG Ying-min, ZHAO Na, LI Yong-fang, MENG Fan-xiu, ZHANG Qi, GAO Ran-peng, ZHANG Yue-hong, YU Bao-feng, GUO Rui, WANG Hai-long, XIE Jun, XU Jun. Targeted Treatment of Hepatoma Using HSV-TK Suicide Gene with The PBI-SUR-TK Vector[J]. China Biotechnology, 2016, 36(2): 16-21.
[15] CHEN Na-zi, JIANG Chao, LI Xiao-kun. Role of Endoplasmic Reticulum Stress in Diseases[J]. China Biotechnology, 2016, 36(1): 76-85.