Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 141-151    DOI: 10.13523/j.cb.2210005
    
Reconstitution of Non-ribosomal Peptide Synthetases Catalytic Module and Peptide Synthesis
WENG Yang-Jing,WU Jie-Qun**()
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310000, China
Download: HTML   PDF(3299KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the principle of modular linear synthesis of peptides by non-ribosomal peptide synthetases (NRPS), it has become a research hotspot to engineer and recombine its catalytic module and design the biosynthetic pathway of peptides to obtain the target peptides. However, heterozygous NRPS has many problems. For example, the catalytic module cannot load the target amino acids or the synthesis efficiency of peptides is significantly reduced, which limits its application. In recent years, great breakthroughs have been made in the research of substrate selectivity of NRPS adenylation domain (A domain) and condensation domain (C domain), docking domain (DD) between NRPS subunits and linker between modules. This review introduces the research progress of NRPS catalytic module reconsitution from the two aspects of substrate selectivity in C domain and catalytic unit substitution with different fusion boundaries, and summarizes the advantages and limitations of each substitution scheme.



Key wordsNon-ribosomal peptide synthetase (NRPS)      Domain hybrid      Adenylation domain      Condensation domain     
Received: 08 October 2022      Published: 31 March 2023
ZTFLH:  Q936  
Corresponding Authors: **Jie-Qun WU     E-mail: jiequnwu@zjut.edu.cn
Cite this article:

WENG Yang-Jing, WU Jie-Qun. Reconstitution of Non-ribosomal Peptide Synthetases Catalytic Module and Peptide Synthesis. China Biotechnology, 2023, 43(2/3): 141-151.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210005     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/141

Fig.1 Chemical structures of several common non ribosomal peptide drugs
Fig.2 General principles of nonribosomal peptide synthesis Domain arrangements of bacterial NRPS and synthesis mechanisms of non-ribosomal peptides: firstly, the A domain adenylates the substrate to form an aminoacyl-AMP, which is subsequently bound to the immediately downstream holo-T domain; secondly, the C domain condenses the upstream donor substrate onto the downstream acceptor substrate; thirdly, the peptide intermediate formed in the second step is transferred to the T-domain of the same module; fourthly, peptide chain release upon hydrolysis or cyclization of the TE domain
Fig.3 Strategies for domain substitution (a) A and A-T domain substitution in surfactin NRPS (b) A,C-A and T-C-A domain substitution in the PvdD subunit of pyoverdine NRPS (c) FSD domain substitution
Fig.4 Strategies for domain substitution (a) Whole module substitution (b) A-T-C domain substitution in the ambactin NRPS (c) CAsub-A-T-CDsub as a catalyst unit for substitution
Fig.5 Strategies for domain substitution (a) A domain substitution with redefined C-A linker (b) Modular fusion between C-A linker without and with synthetic zippers
[1]   Clardy J, Fischbach M A, Walsh C T. New antibiotics from bacterial natural products. Nature Biotechnology, 2006, 24(12): 1541-1550.
doi: 10.1038/nbt1266 pmid: 17160060
[2]   von Nussbaum F, Brands M, Hinzen B, et al. Antibacterial natural products in medicinal chemistry: exodus or revival? Angewandte Chemie (International Ed in English), 2006, 45(31): 5072-5129.
doi: 10.1002/(ISSN)1521-3773
[3]   Felnagle E A, Jackson E E, Chan Y A, et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Molecular Pharmaceutics, 2008, 5(2): 191-211.
doi: 10.1021/mp700137g pmid: 18217713
[4]   Calcott M J, Ackerley D F. Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products. Biotechnology Letters, 2014, 36(12): 2407-2416.
doi: 10.1007/s10529-014-1642-y pmid: 25214216
[5]   Sieber S A, Marahiel M A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chemical Reviews, 2005, 105(2): 715-738.
pmid: 15700962
[6]   Grünewald J, Marahiel M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiology and Molecular Biology Reviews: MMBR, 2006, 70(1): 121-146.
doi: 10.1128/MMBR.70.1.121-146.2006
[7]   Caboche S, Leclère V, Pupin M, et al. Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. Journal of Bacteriology, 2010, 192(19): 5143-5150.
doi: 10.1128/JB.00315-10 pmid: 20693331
[8]   Mootz H D, Schwarzer D, Marahiel M A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem: A European Journal of Chemical Biology, 2002, 3(6): 490-504.
doi: 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N
[9]   Fischbach M A, Walsh C T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic machinery, and mechanisms. Chemical Reviews, 2006, 106(8): 3468-3496.
doi: 10.1021/cr0503097 pmid: 16895337
[10]   Gulick A M. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chemical Biology, 2009, 4(10): 811-827.
doi: 10.1021/cb900156h pmid: 19610673
[11]   Beld J, Sonnenschein E C, Vickery C R, et al. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Natural Product Reports, 2014, 31(1): 61-108.
doi: 10.1039/c3np70054b pmid: 24292120
[12]   Lambalot R H, Gehring A M, Flugel R S, et al. A new enzyme superfamily: the phosphopantetheinyl transferases. Chemistry & Biology, 1996, 3(11): 923-936.
doi: 10.1016/S1074-5521(96)90181-7
[13]   Brown A S, Calcott M J, Owen J G, et al. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Natural Product Reports, 2018, 35(11): 1210-1228.
doi: 10.1039/c8np00036k pmid: 30069573
[14]   McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. Journal of Industrial Microbiology & Biotechnology, 2019, 46(3): 493-513.
[15]   Baltz R H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synthetic Biology, 2014, 3(10): 748-758.
doi: 10.1021/sb3000673 pmid: 23654258
[16]   Miao V, Gal M F C L, Nguyen K, et al. Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chemistry & Biology, 2006, 13(3): 269-276.
doi: 10.1016/j.chembiol.2005.12.012
[17]   Nguyen K T, Ritz D, Gu J Q, et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46): 17462-17467.
[18]   Mootz H D, Kessler N, Linne U, et al. Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. Journal of the American Chemical Society, 2002, 124(37): 10980-10981.
pmid: 12224936
[19]   Butz D, Schmiederer T, Hadatsch B, et al. Module extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina. ChemBioChem: A European Journal of Chemical Biology, 2008, 9(8): 1195-1200.
doi: 10.1002/cbic.v9:8
[20]   Stachelhaus T, Schneider A, Marahiel M A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science, 1995, 269(5220): 69-72.
pmid: 7604280
[21]   Schneider A, Stachelhaus T, Marahiel M A. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Molecular and General Genetics MGG, 1998, 257(3): 308-318.
doi: 10.1007/s004380050652
[22]   Ackerley D F, Lamont I L. Characterization and genetic manipulation of peptide synthetases in Pseudomonas aeruginosa PAO1 in order to generate novel pyoverdines. Chemistry & Biology, 2004, 11(7): 971-980.
doi: 10.1016/j.chembiol.2004.04.014
[23]   Belshaw P J, Walsh C T, Stachelhaus T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science, 1999, 284(5413): 486-489.
pmid: 10205056
[24]   Linne U, Marahiel M A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry, 2000, 39(34): 10439-10447.
pmid: 10956034
[25]   Stachelhaus T, Mootz H D, Marahiel M A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chemistry & Biology, 1999, 6(8): 493-505.
doi: 10.1016/S1074-5521(99)80082-9
[26]   CrÃ1/4semann M, Kohlhaas C, Piel J. Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. Chemical Science, 2013, 4(3): 1041-1045.
doi: 10.1039/C2SC21722H
[27]   Kries H, Niquille D L, Hilvert D. A subdomain swap strategy for reengineering nonribosomal peptides. Chemistry & Biology, 2015, 22(5): 640-648.
doi: 10.1016/j.chembiol.2015.04.015
[28]   Thong W L, Zhang Y X, Zhuo Y, et al. Gene editing enables rapid engineering of complex antibiotic assembly lines. Nature Communications, 2021, 12: 6872.
doi: 10.1038/s41467-021-27139-1 pmid: 34824225
[29]   Yakimov M M, Giuliano L, Timmis K N, et al. Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. Journal of Molecular Microbiology and Biotechnology, 2000, 2(2): 217-224.
pmid: 10939247
[30]   Doekel S, Gal M F C L, Gu J Q, et al. Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology (Reading, England), 2008, 154(Pt 9): 2872-2880.
doi: 10.1099/mic.0.2008/020685-0
[31]   Cai X F, Zhao L, Bode H B. Reprogramming promiscuous nonribosomal peptide synthetases for production of specific peptides. Organic Letters, 2019, 21(7): 2116-2120.
doi: 10.1021/acs.orglett.9b00395 pmid: 30859835
[32]   Hahn M, Stachelhaus T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15585-15590.
[33]   Kegler C, Bode H B. Artificial splitting of a non-ribosomal peptide synthetase by inserting natural docking domains. Angewandte Chemie, 2020, 132(32): 13565-13569.
doi: 10.1002/ange.v132.32
[34]   Tanovic A, Samel S A, Essen L O, et al. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science, 2008, 321(5889): 659-663.
doi: 10.1126/science.1159850 pmid: 18583577
[35]   Calcott M J, Owen J G, Lamont I L, et al. Biosynthesis of novel Pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2014, 80(18): 5723-5731.
doi: 10.1128/AEM.01453-14 pmid: 25015884
[36]   Keller U, Schauwecker F. Combinatorial biosynthesis of non-ribosomal peptides. Combinatorial Chemistry & High Throughput Screening, 2003, 6(6): 527-540.
[37]   Miller B R, Sundlov J A, Drake E J, et al. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Proteins, 2014, 82(10): 2691-2702.
doi: 10.1002/prot.24635
[38]   Beer R, Herbst K, Ignatiadis N, et al. Creating functional engineered variants of the single-module non-ribosomal peptide synthetase IndC by T domain exchange. Molecular BioSystems, 2014, 10(7): 1709-1718.
doi: 10.1039/c3mb70594c pmid: 24457530
[39]   Calcott M J, Ackerley D F. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. BMC Microbiology, 2015, 15: 162.
doi: 10.1186/s12866-015-0496-3 pmid: 26268580
[40]   Bozhüyük K A J, Fleischhacker F, Linck A, et al. De novo design and engineering of non-ribosomal peptide synthetases. Nature Chemistry, 2018, 10(3): 275-281.
doi: 10.1038/nchem.2890 pmid: 29461518
[41]   Süssmuth R D, Mainz A. Nonribosomal peptide synthesis-principles and prospects. Angewandte Chemie (International Ed in English), 2017, 56(14): 3770-3821.
doi: 10.1002/anie.201609079
[42]   Kaniusaite M, Tailhades J, Kittilä T, et al. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. The FEBS Journal, 2021, 288(2): 507-529.
doi: 10.1111/febs.v288.2
[43]   Kaniusaite M, Goode R J A, Schittenhelm R B, et al. The diiron monooxygenase CmlA from chloramphenicol biosynthesis allows reconstitution of β-hydroxylation during glycopeptide antibiotic biosynthesis. ACS Chemical Biology, 2019, 14(12): 2932-2941.
doi: 10.1021/acschembio.9b00862 pmid: 31774267
[44]   Kaniusaite M, Tailhades J, Marschall E A, et al. A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics. Chemical Science, 2019, 10(41): 9466-9482.
doi: 10.1039/c9sc03678d pmid: 32055321
[45]   Clugston S L, Sieber S A, Marahiel M A, et al. Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C 5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry, 2003, 42(41): 12095-12104.
pmid: 14556641
[46]   Stein D B, Linne U, Marahiel M A. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. The FEBS Journal, 2005, 272(17): 4506-4520.
doi: 10.1111/ejb.2005.272.issue-17
[47]   Doekel S, Marahiel M A. Dipeptide formation on engineered hybrid peptide synthetases. Chemistry & Biology, 2000, 7(6): 373-384.
doi: 10.1016/S1074-5521(00)00118-6
[48]   Samel S A, Schoenafinger G, Knappe T A, et al. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure, 2007, 15(7): 781-792.
pmid: 17637339
[49]   Bozhüyük K A J, Linck A, Tietze A, et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nature Chemistry, 2019, 11(7): 653-661.
doi: 10.1038/s41557-019-0276-z pmid: 31182822
[50]   Marahiel M A. A structural model for multimodular NRPS assembly lines. Natural Product Reports, 2016, 33(2): 136-140.
doi: 10.1039/c5np00082c pmid: 26429504
[51]   Horsman M E, Hari T P A, Boddy C N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Natural Product Reports, 2016, 33(2): 183-202.
doi: 10.1039/c4np00148f pmid: 25642666
[52]   Hacker C, Cai X F, Kegler C, et al. Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS. Nature Communications, 2018, 9: 4366.
doi: 10.1038/s41467-018-06712-1 pmid: 30341296
[53]   Cai X F, Nowak S, Wesche F, et al. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nature Chemistry, 2017, 9(4): 379-386.
doi: 10.1038/nchem.2671 pmid: 28338679
[54]   Reinke A W, Grant R A, Keating A E. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. Journal of the American Chemical Society, 2010, 132(17): 6025-6031.
doi: 10.1021/ja907617a pmid: 20387835
[55]   Thompson K E, Bashor C J, Lim W A, et al. SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synthetic Biology, 2012, 1(4): 118-129.
pmid: 22558529
[56]   Bozhueyuek K A J, Watzel J, Abbood N, et al. Synthetic zippers as an enabling tool for engineering of non-ribosomal peptide synthetases. Angewandte Chemie (International Ed in English), 2021, 60(32): 17531-17538.
doi: 10.1002/anie.v60.32
[57]   Meyer S, Kehr J C, Mainz A, et al. Biochemical dissection of the natural diversification of microcystin provides lessons for synthetic biology of NRPS. Cell Chemical Biology, 2016, 23(4): 462-471.
doi: 10.1016/j.chembiol.2016.03.011 pmid: 27105282
[58]   Steiniger C, Hoffmann S, Süssmuth R D. Probing exchange units for combining iterative and linear fungal nonribosomal peptide synthetases. Cell Chemical Biology, 2019, 26(11): 1526-1534.e2.
doi: S2451-9456(19)30270-3 pmid: 31471217
[59]   Stachelhaus T, Marahiel M A. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA (*). Journal of Biological Chemistry, 1995, 270(11): 6163-6169.
doi: 10.1074/jbc.270.11.6163 pmid: 7534306
[60]   Stachelhaus T, Marahiel M A. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiology Letters, 1995, 125(1): 3-14.
pmid: 7867917
[61]   Bloudoff K, Alonzo D A, Schmeing T M. Chemical probes allow structural insight into the condensation reaction of nonribosomal peptide synthetases. Cell Chem Biol, 2016, 23(3): 331-339.
doi: 10.1016/j.chembiol.2016.02.012 pmid: 26991102
[62]   Schoppet M, Peschke M, Kirchberg A, et al. The biosynthetic implications of late-stage condensation domain selectivity during glycopeptide antibiotic biosynthesis. Chemical Science, 2018, 10(1): 118-133.
doi: 10.1039/C8SC03530J
[63]   Calcott M J, Owen J G, Ackerley D F. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nature Communications, 2020, 11: 4554.
doi: 10.1038/s41467-020-18365-0 pmid: 32917865
No related articles found!