Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 105-115    DOI: 10.13523/j.cb.2205046
    
Advances in Cell Surface Display Technology in Environmental Remediation
HUANG Ming-zhu1,2,YAO Kun2,SONG Zhuo-lin2,ZHANG Hao2,LIU Bin2,CHEN Xue-lan1,2,**()
1. National R&D Center for Freshwater Fish Processing, Nanchang 330022, China
2. College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
Download: HTML   PDF(1297KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Industrialization has led to various toxic compounds emission, which causes environmental contamination. Aside from natural geological weathering, traditional solutions include chemical conversion, physical absorption, electrochemical methods and ions exchange, but their applications are limited due to some disadvantages, such as secondary pollution, high energy requirement, high investment cost, low regeneration efficiency and inefficiency in low-concentration wastewater treatment. Cell surface engineering is an innovative, cost-effective biotechnology of microorganism for modification of cell surface function through joining external functional peptides with surface anchoring proteins. In contrast to conventional intracellular and secretion expression systems, proteins displayed on the surface of microorganism may exhibit enhanced stability against changes in organic solvents, proteases, temperature and pH. Surface-engineered cells prepared by cultivation are ready to be used as microparticles covered with proteins/peptides, avoiding troublesome concentration procedures and protein purification. Furthermore, cell-surface display engineering is suitable for high throughput screening from the mutant library for more capable proteins/peptides at the single-cell level. Currently, this technology is widely used in the control of environmental pollution. This review is focused on recent strategies of using cell-surface display technology in environmental bioremediation, summarizing its applications, recent progress and future prospects.



Key wordsBioremediation      Biosorption      Cell surface display      Whole cell biocatalyst      Microorganism     
Received: 23 May 2022      Published: 10 October 2022
ZTFLH:  Q813  
Corresponding Authors: Xue-lan CHEN     E-mail: xuelanchen162@163.com
Cite this article:

HUANG Ming-zhu,YAO Kun,SONG Zhuo-lin,ZHANG Hao,LIU Bin,CHEN Xue-lan. Advances in Cell Surface Display Technology in Environmental Remediation. China Biotechnology, 2022, 42(9): 105-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2205046     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/105

Fig.1 Cell surface display system[5]
Fig.2 The construction route of the synthetic bacterium-MNP co-assemblies for adsorption of heavy metals[21] SynHMB: The synthetic heavy-metal-binding protein; PEI: Polyethyleimine; DTPA: Diethylenetriaminepentaacetic acid; RBS: Ribosome binding sequence; pT7: T7 promoter; impX-impH: The gene cluster encoding T6SS; tT7: T7 terminator; Omp: OmpA secretory sequence; CTR: C-terminally transmembrane regions of OmpA; KanR: Kanamycin resistant gene; GFP: Green fluorescence protein-encoding gene; MNP: Magnetic nanoparticle; TEOS: Tetraethyl orthosilicate; MNP@SiO2-PEI-DTPA: Silica-coated magnetic nanoparticle grafted with PEI and DTPA
Fig.3 Genetic circuit for bioremediation and biocontainment system [24]
Fig.4 Hg2+ of bioremediation and biocontainment system [25] Sensor 1: Hg2+ responsive module; Sensor 2: IPTG responsive module; MBP: Mercury binding protein; Toxin: Suicide protein; Pc: Constitutive promoter; PMerT: Mercury inducible promoter; PTac: IPTG inducible synthetic promoter; PLtetO: A well-known artificial promoter with extremely low basal leakage and negatively regulated by TetR
物种 展示蛋白/肽 锚定蛋白 目的 参考文献
E. coli PbrR/PbrR691/PbrD 冰核蛋白 吸附铅 [11]
E. coli CysLysCysLysCysLysCys 冰核蛋白 吸附汞 [12]
E. coli ThrAsnThrLeuSerAsnAsn OmpCt 吸附铅 [13]
E. coli AsnAlaLysHisHisProArg AsnArgTrpHisHisLeuGlu
SerProHisHisGlyGlyTrp
OmpCt 吸附铜 [14]
D. radiodurans SmtA/PhoN Hpi、SlpA 吸附镉、铀 [15]
S. cerevisiae CadR α-凝集素 吸附镉 [16]
S. cerevisiae SMT2a/SMT2c/SMT2d/SMT2e α-凝集素 吸附镉 [17]
B. subtilis 18His CotB 吸附镍 [19]
B. subtilis 12His CotE 吸附镍、镉 [20]
E. coli SynHMB OmpA 吸附镉、铅 [21]
E. coli 锌指结构 OmpC [23]
E. coli CueR Lpp-OmpA 吸附铜 [24]
E. coli MBP 冰核蛋白 吸附汞 [25]
E. coli PET酶 YeeJ 降解PET [31]
P. pastoris PET酶 GPI锚定序列 降解PET [5]
P. putida 有机磷水解酶 冰核蛋白 降解有机磷农药 [32]
B. subtilis OpaA/Opdcb CotG 降解有机磷农药 [33]
E. coli 甲基对硫磷水解酶 EcFbFP 降解有机磷农药 [34]
E. coli CarCB2 冰核蛋白 降解三氟氯氰菊酯 [35]
Stenotrophomonas sp. 胺甲萘水解酶 冰核蛋白 降解胺甲萘 [36]
S. cerevisiae 漆酶 Aga1-Aga2 多种染料脱色 [39]
物种 展示蛋白/肽 锚定蛋白 目的 参考文献
B. thuringiensis WlacD MBG RB19脱色 [40]
S. cerevisiae VP Aga1-Aga2 降解偶氮染料 [41]
S. cerevisiae LiP Aga1-Aga2 降解偶氮染料 [42]
B. subtilis TMR/GDH CotG 降解三苯基甲烷染料 [43]
E. coli CarEW 冰核蛋白 降解邻苯二甲酸酯 [46]
E. coli EstG OprF 降解邻苯二甲酸二丁酯 [48]
E. coli ASTB OprF/Lpp-OmpA 双酚A解毒 [49]
S. cerevisiae 漆酶 Aga1-Aga2 双酚A/磺胺甲恶唑解毒 [7]
B. subtilis 腈水解酶 CotG 降解腈类化合物 [52]
S. cerevisiae 漆酶 Aga2 APAP降解 [54]
E. coli Omega-transaminase AIDA-I 黏附蓝藻 [57]
Table 1 Cell surface display system for recent applications in environmental remediation
[1]   徐明, 阚海东, 桑楠, 等. 持久性有毒污染物环境健康研究的现状与思考. 中国科学院院刊, 2020, 35(11): 1337-1343.
[1]   Xu M, Kan H D, Sang N, et al. Current status and thinking of environmental health research on persistent toxic pollutants. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1337-1343.
[2]   Shi L, Yin Y, Zhang L C, et al. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review. Applied Catalysis B: Environmental, 2019, 248: 405-422.
doi: 10.1016/j.apcatb.2019.02.044
[3]   Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnology Advances, 2015, 33(7): 1403-1411.
doi: 10.1016/j.biotechadv.2015.06.002 pmid: 26070720
[4]   Yang T, Chen M L, Wang J H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends in Analytical Chemistry, 2015, 66: 90-102.
doi: 10.1016/j.trac.2014.11.016
[5]   Chen Z Z, Wang Y Y, Cheng Y Y, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 2020, 709: 136138.
doi: 10.1016/j.scitotenv.2019.136138
[6]   Liu Z, Ho S H, Hasunuma T, et al. Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresource Technology, 2016, 215: 324-333.
doi: S0960-8524(16)30435-7 pmid: 27039354
[7]   Chen Y Y, Stemple B, Kumar M, et al. Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micropollutants bisphenol A and sulfamethoxazole. Environmental Science & Technology, 2016, 50(16): 8799-8808.
doi: 10.1021/acs.est.6b01641
[8]   Yin K, Lv M, Wang Q N, et al. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Research, 2016, 103: 383-390.
doi: 10.1016/j.watres.2016.07.053
[9]   Wang Y Y, Selvamani V, Yoo I K, et al. A novel strategy for the microbial removal of heavy metals: cell-surface display of peptides. Biotechnology and Bioprocess Engineering, 2021, 26(1): 1-9.
doi: 10.1007/s12257-020-0218-z
[10]   Ueda M. Establishment of cell surface engineering and its development. Bioscience, Biotechnology and Biochemistry, 2016, 80(7): 1243-1253.
doi: 10.1080/09168451.2016.1153953
[11]   Jia X Q, Li Y, Xu T, et al. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnology and Bioengineering, 2020, 117(12): 3820-3834.
doi: 10.1002/bit.27525
[12]   Nguyen T T L, Lee H R, Hong S H, et al. Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide. Applied Biochemistry and Biotechnology, 2013, 169(4): 1188-1196.
doi: 10.1007/s12010-012-0073-2
[13]   Liu M R, Kakade A, Liu P, et al. Hg2+-binding peptide decreases mercury ion accumulation in fish through a cell surface display system. Science of the Total Environment, 2019, 659: 540-547.
doi: 10.1016/j.scitotenv.2018.12.406
[14]   Maruthamuthu M K, Nadarajan S P, Ganesh I, et al. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater. Bioprocess and Biosystems Engineering, 2015, 38(11): 2077-2084.
doi: 10.1007/s00449-015-1447-y pmid: 26219270
[15]   Misra C S, Sounderajan S, Apte S K. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans. Journal of Hazardous Materials, 2021, 419: 126477.
doi: 10.1016/j.jhazmat.2021.126477
[16]   Tao H C, Li P S, Liu Q S, et al. Surface-engineered Saccharomyces cerevisiae cells displaying redesigned CadR for enhancement of adsorption of cadmium (II). Journal of Chemical Technology & Biotechnology, 2016, 91(6): 1889-1895.
[17]   Wei Q G, Zhang H H, Guo D G, et al. Cell surface display of four types of Solanum nigrum metallothionein on Saccharomyces cerevisiae for biosorption of cadmium. Journal of Microbiology and Biotechnology, 2016, 26(5): 846-853.
doi: 10.4014/jmb.1512.12041
[18]   Li H, Dong W, Liu Y, et al. Enhanced biosorption of nickel ions on immobilized surface-engineered yeast using nickel-binding peptides. Frontiers in Microbiology, 2019, 10: 1254.
doi: 10.3389/fmicb.2019.01254 pmid: 31297097
[19]   Hinc K, Ghandili S, Karbalaee G, et al. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Research in Microbiology, 2010, 161(9): 757-764.
doi: 10.1016/j.resmic.2010.07.008
[20]   Kim W, Kim D, Back S, et al. Removal of Ni2+ and Cd2+ by surface display of polyhistidine on Bacillus subtilis spore using CotE anchor protein. Biotechnology and Bioprocess Engineering, 2019, 24(2): 375-381.
doi: 10.1007/s12257-018-0467-2
[21]   Zhu N L, Zhang B, Yu Q L. Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Applied Materials & Interfaces, 2020, 12(20): 22948-22957.
[22]   Santos-Zavaleta A, Salgado H, Gama-Castro S, et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Research, 2019, 47(D1): D212-D220.
doi: 10.1093/nar/gky1077
[23]   Ravikumar S, Yoo I K, Lee S Y, et al. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess and Biosystems Engineering, 2011, 34(9): 1119-1126.
doi: 10.1007/s00449-011-0562-7
[24]   Wang W, Jiang F Y, Wu F, et al. Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell. Applied Microbiology and Biotechnology, 2019, 103(16): 6797-6807.
doi: 10.1007/s00253-019-09984-9 pmid: 31240366
[25]   Xue Y B, Du P, Ibrahim Shendi A A, et al. Mercury bioremediation in aquatic environment by genetically modified bacteria with self-controlled biosecurity circuit. Journal of Cleaner Production, 2022, 337: 130524.
doi: 10.1016/j.jclepro.2022.130524
[26]   Carr C M, Clarke D J, Dobson A D W. Microbial polyethylene terephthalate hydrolases: current and future perspectives. Frontiers in Microbiology, 2020, 11: 571265.
doi: 10.3389/fmicb.2020.571265
[27]   黄逸伦, 张师军, 吴长江. 废旧PET回收循环利用方法的研究进展. 现代塑料加工应用, 2021, 33(3): 52-55.
[27]   Huang Y L, Zhang S J, Wu C J. Research progress on recycling methods of waste PET. Modern Plastics Processing and Applications, 2021, 33(3): 52-55.
[28]   赵彧瑾, 陈仔君, 赵晶晶, 等. 聚对苯二甲酸乙二醇酯(PET)降解酶的研究进展. 微生物学杂志, 2021, 41(6): 90-96.
[28]   Zhao Y J, Chen Z J, Zhao J J, et al. Advanced in degradation enzyme of polyethylene terephthalate (PET). Journal of Microbiology, 2021, 41(6): 90-96.
[29]   Son H F, Cho I J, Joo S, et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 2019, 9(4): 3519-3526.
doi: 10.1021/acscatal.9b00568
[30]   Heyde S A H, Bååth J A, Westh P, et al. Surface display as a functional screening platform for detecting enzymes active on PET. Microbial Cell Factories, 2021, 20(1): 93.
doi: 10.1186/s12934-021-01582-7 pmid: 33933097
[31]   Gercke D, Furtmann C, Tozakidis I E P, et al. Highly crystalline post-consumer PET waste hydrolysis by surface displayed using a bacterial whole-cell biocatalyst. ChemCatChem, 2021, 13(15): 3479-3489.
doi: 10.1002/cctc.202100443
[32]   张红星, 李茜茜, 叶婷, 等. 细胞表面展示有机磷水解酶的恶臭假单胞菌工程菌的构建及全细胞酶活性分析. 华中农业大学学报, 2008, 27(1): 65-70.
[32]   Zhang H X, Li Q Q, Ye T, et al. Construction and whole-cell catalytic activity analysis of engineered Pseudomonas putida with cell-surface displayed organophosphorus hydrolase. Journal of Huazhong Agricultural University, 2008, 27(1): 65-70.
[33]   Song T Y, Wang F L, Xiong S S, et al. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis. Biochemical and Biophysical Research Communications, 2019, 510(1): 13-19.
doi: 10.1016/j.bbrc.2018.12.077
[34]   Bian L, Zhang Z, Tang R X, et al. Flavin-based fluorescent protein EcFbFP auto-guided surface display of methyl parathion hydrolase in Escherichia coli. Molecular Biotechnology, 2019, 61(11): 816-825.
doi: 10.1007/s12033-019-00204-3 pmid: 31486973
[35]   Ding J M, Liu Y, Gao Y X, et al. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. Chemosphere, 2022, 289: 133130.
doi: 10.1016/j.chemosphere.2021.133130
[36]   Yang C, Xu X Q, Liu Y P, et al. Simultaneous hydrolysis of carbaryl and chlorpyrifos by Stenotrophomonas sp. strain YC-1 with surface-displayed carbaryl hydrolase. Scientific Reports, 2017, 7: 13391.
doi: 10.1038/s41598-017-13788-0
[37]   Liu J, Tan L M, Wang J, et al. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere, 2016, 157: 200-207.
doi: 10.1016/j.chemosphere.2016.05.031
[38]   Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environment International, 2004, 30(7): 953-971.
pmid: 15196844
[39]   Popović N, Pržulj D, Mladenović M, et al. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. International Journal of Biological Macromolecules, 2021, 181: 1072-1080.
doi: 10.1016/j.ijbiomac.2021.04.115
[40]   Wan J, Sun X W, Liu C, et al. Decolorization of textile dye RB 19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase. World Journal of Microbiology & Biotechnology, 2017, 33(6): 123.
doi: 10.1007/s11274-017-2290-x
[41]   Ilić Ðurđić K, Ostafe R, Ðurđević Delmaš A, et al. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme and Microbial Technology, 2020, 136: 109509.
doi: 10.1016/j.enzmictec.2020.109509
[42]   Ilić Ðurđić K, Ostafe R, Prodanović O, et al. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science & Engineering, 2021, 15(2): 19.
[43]   Gao F, Ding H T, Xu X H, et al. A self-sufficient system for removal of synthetic dye by coupling of spore-displayed triphenylmethane reductase and glucose 1-dehydrogenase. Environmental Science and Pollution Research International, 2016, 23(21): 21319-21326.
pmid: 27502455
[44]   Yang X, Flowers R C, Weinberg H S, et al. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 2011, 45(16): 5218-5228.
doi: 10.1016/j.watres.2011.07.026 pmid: 21864879
[45]   Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 2015, 72: 3-27.
doi: 10.1016/j.watres.2014.08.053 pmid: 25267363
[46]   Ding J M, Zhou Y, Wang C F, et al. Development of a whole-cell biocatalyst for diisobutyl phthalate degradation by functional display of a carboxylesterase on the surface of Escherichia coli. Microbial Cell Factories, 2020, 19(1): 114.
doi: 10.1186/s12934-020-01373-6
[47]   Whangsuk W, Sungkeeree P, Nakasiri M, et al. Two endocrine disrupting dibutyl phthalate degrading esterases and their compensatory gene expression in Sphingobium sp. SM42. International Biodeterioration & Biodegradation, 2015, 99: 45-54.
[48]   Sungkeeree P, Whangsuk W, Dubbs J, et al. Biodegradation of endocrine disrupting dibutyl phthalate by a bacterial consortium expressing Sphingobium sp. SM42 esterase. Process Biochemistry, 2016, 51(8): 1040-1045.
doi: 10.1016/j.procbio.2016.04.014
[49]   Nanudorn P, Thiengmag S, Whangsuk W, et al. Potential use of two aryl sulfotransferase cell-surface display systems to detoxify the endocrine disruptor bisphenol A. Biochemical and Biophysical Research Communications, 2020, 528(4): 691-697.
doi: S0006-291X(20)31058-5 pmid: 32513533
[50]   Banerjee A, Sharma R, Banerjee U C. The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, 2002, 60(1-2): 33-44.
pmid: 12382040
[51]   Martinkova L, Mylerova V. Synthetic applications of nitrile-converting enzymes. Current Organic Chemistry, 2003, 7(13): 1279-1295.
doi: 10.2174/1385272033486486
[52]   Chen H Y, Zhang T X, Sun T Y, et al. Clostridium thermocellum nitrilase expression and surface display on Bacillus subtilis spores. Journal of Molecular Microbiology and Biotechnology, 2015, 25(6): 381-387.
[53]   Wu S J, Zhang L L, Chen J M. Paracetamol in the environment and its degradation by microorganisms. Applied Microbiology and Biotechnology, 2012, 96(4): 875-884.
doi: 10.1007/s00253-012-4414-4 pmid: 23053075
[54]   Wu Y, Chen Y Y, Wei N. Biocatalytic properties of cell surface display laccase for degradation of emerging contaminant acetaminophen in water reclamation. Biotechnology and Bioengineering, 2020, 117(2): 342-353.
doi: 10.1002/bit.27214 pmid: 31654417
[55]   Mongkolthanaruk W, Dharmsthiti S. Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. International Biodeterioration & Biodegradation, 2002, 50(2): 101-105.
[56]   Thiengmag S, Chuencharoen S, Thasana N, et al. Bacterial consortium expressing surface displayed, intra- and extracellular lipases and pseudopyronine B for the degradation of oil. International Journal of Environmental Science and Technology, 2016, 13(8): 2067-2078.
doi: 10.1007/s13762-016-1034-z
[57]   Gustavsson M, Muraleedharan M N, Larsson G. Surface expression of ω-transaminase in Escherichia coli. Applied and Environmental Microbiology, 2014, 80(7): 2293-2298.
doi: 10.1128/AEM.03678-13 pmid: 24487538
[58]   向红英, 王菊芳, 杨愈丰, 等. 细菌表面展示技术研究新进展. 生物化学与生物物理进展, 2019, 46(2): 162-168.
[58]   Xiang H Y, Wang J F, Yang Y F, et al. The research progress of bacterial surface display technology. Progress in Biochemistry and Biophysics, 2019, 46(2): 162-168.
[59]   Kroukamp H, den Haan R, van Wyk N, et al. Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Applied Energy, 2013, 102: 150-156.
doi: 10.1016/j.apenergy.2012.05.062
[1] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[2] LIU Jia-meng,LI Xue-ying,LIU Ye-xue,WANG Wen-hang,LI Qing-gang,LU Fu-ping,LI Yu. Research Progress on Microbial Synthesis of Heme Using 5-Aminolevulinic Acid as the Sole Precursor[J]. China Biotechnology, 2022, 42(3): 99-109.
[3] MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin. Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress[J]. China Biotechnology, 2022, 42(1/2): 182-190.
[4] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[5] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[6] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[7] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[8] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[9] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[10] CAO Bi-pu,MIAO Li-hua,GUO Bao-yan,HE Li-ping. The Feasibility Analysis That Nanopore Sequencing Technology Is Applied to Food Microbiological Detection[J]. China Biotechnology, 2018, 38(12): 91-98.
[11] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[12] SHI Gui-qin, ZHOU Wen-shan, REN Fei. Research Progress on Increasing SOD Production by Microorganism Fermentation[J]. China Biotechnology, 2017, 37(4): 115-124.
[13] WU Lin-huan, LU Zhen-ming, GONG Jin-song, SHI Jin-song, XU Zheng-hong. Integrating Distributed Heterogeneous Food Microorganism Data by Semantic Web Technology[J]. China Biotechnology, 2017, 37(3): 124-132.
[14] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[15] CAO Ying-ying, DENG Dun, XIA Fang-liang, SUN Ai-jun, ZHANG Yun, HU Yun-feng. Utilization of a Marine Microbial Esterase in the Enantio-selective Preparation of (R)-Ethyl 2-chloropropionate[J]. China Biotechnology, 2016, 36(12): 59-65.