Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 100-108    DOI: 10.13523/j.cb.2105021
    
Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis
MING Yue1,ZHAO Zi-tong1,WANG Hong-lei2,LIANG Zhi-hong1,3,**()
1 College of Food Science and Nutritional Engineering,China Agricultural University,Beijing 100083, China
2 Yantai Institute of China Agricultural University, Yantai 264670, China
3 Key Laboratory of Safety Assessment of Genetically Modified Organism, Ministry of Agriculture and Rural Affairs,Beijing 100083, China
Download: HTML   PDF(680KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Functional enzymes have been widely used in the fields of food, chemicals, medicine, etc. However, high temperature reduces the catalytic efficiency of enzymes. The protein engineering technology can be used as a key link to modify enzymes’ structure and function, and to obtain industrial enzymes with thermostability. Traditional directed evolution methods can only rely on random mutations for manual screening with low efficiency. Rational design, as the main method of thermostability modification, can be used to predict potential mutation sites with various computer programs and software, but it requires deep understanding of the catalytic and thermal stability mechanism. For most natural enzymes, it is easy to obtain sequence and crystal structure, and is also an important basis for predicting function. This paper focuses on the modification strategies as follows: common mutation, the mutation based on amino acid preference, trunking of flexible regions, the optimization of intramolecular interactions, the modification of catalytic active regions and computer-aided design with the sequence and crystal structure analysis. These strategies have the advantages of high screening efficiency and modification accuracy, and strong practicability. And it also analyzes the thermostability modification cases of different enzymes, aiming to provide an effective reference for the selection of modification strategies, and also give theoretical support for the heat resistance research of industrial enzymes.



Key wordsSequence analysis      Structural analysis      Thermostability      Modification strategies     
Received: 12 May 2021      Published: 08 November 2021
ZTFLH:  TQ033  
Corresponding Authors: Zhi-hong LIANG     E-mail: lzh105@cau.edu.cn
Cite this article:

MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis. China Biotechnology, 2021, 41(10): 100-108.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105021     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/100

Ala Asp Cys His Ile Lys Leu Val Tyr
Ala 0.0 0.5 -10.1 -6.6 -1.8 -1.8 -2.2 -3.7 -0.7
Cys 10.1 0.0 0.0 0.7 7.6 1.8 3.5 8.3 3.5
His 6.6 2.0 -0.7 0.0 0.9 3.5 1.8 -0.5 -1.2
Met 10.4 -0.7 1.2 4.0 4.7 4.0 8.6 6.3 1.2
Trp 3.7 1.6 0.0 0.0 -1.2 0.0 -2.9 2.7 9.8
Table 1 Residual substitution bias of thermophilic and thermophilic proteins in 16 families
Amino
Acids
Type I (2 439) Type II (911)
i i+1 i+2 i+3 i i+1 i+2 i+3
Cys 1.43(54) 0.80(30) 1.04(39) 1.48(55) 1.57(22) 0.28(4) 0.43(6) 1.64(23)
Asp 2.76(405) 1.21(175) 3.22(440) 1.04(151) 0.29(16) 0.71(39) 0.60(33) 1.34(73)
Gly 1.07(202) 0.42(79) 0.64(122) 2.57(491) 0.97(69) 0.31(22) 9.39(668) 0.89(63)
Lys 0.59(85) 1.33(190) 0.96(138) 1.04(146) 1.25(66) 1.67(89) 0.24(13) 1.40(74)
Asn 2.14(243) 0.71(82) 2.41(274) 1.29(146) 0.77(33) 0.47(20) 1.57(67) 0.56(24)
Pro 1.48(168) 4.29(472) 0.14(16) 0.00(0) 1.91(83) 4.92(213) 0.00(0) 0.00(0)
Ser 1.68(241) 1.61(237) 1.61(232) 0.94(140) 0.65(36) 0.97(54) 0.34(19) 1.52(84)
Thr 1.29(182) 0.94(133) 1.48(211) 1.04(146) 0.94(50) 0.71(38) 0.13(7) 1.38(73)
Table 2 The position bias of different amino acids for β-turns
改造突变体 优化作用力 热稳定性指标 参考文献
腈水合酶(EC 4.2.1.84) NHase-TH-A3 盐桥 t1/2提高1.5倍 [26]
α-淀粉酶(EC 3.2.1.1) P35C-G426C / G116C-Q120C /
R436C-M480C
二硫键、氢键、盐桥 Tm提高5.2℃,t1/2提高6倍 [27]
β-葡聚糖酶(EC 3.2.1.6) N31C-T187C / P102C-N125C 二硫键、氢键 t1/2提高48.3%,T50提高1.5℃ [28]
支链淀粉酶(EC 3.2.1.41) D138F 阳离子-π相互作用 Tm提高1.4℃,t1/2提高1.4倍 [29]
C691R 氢键 Tm提高2.5℃,t1/2提高1.6倍
G692M 范德华力 Tm提高3.2℃,t1/2提高2.3倍
T694F 疏水相互作用 Tm提高3.2℃,t1/2提高1.6倍
脂肪酶(EC 3.1.1.3) S142A / D217V / Q239F / S250Y 疏水相互作用、盐桥 Tm提高7.7℃,t1/2提高4.2倍 [30]
葡萄糖氧化酶(EC 1.1.3.4) GoxM8 疏水相互作用 Tm提高8℃ [31]
Table 3 Improving effect of intramolecular interaction on enzyme thermal stability
Fig.1 RMSF values of E.coli transketolase at different temperatures ( 300 K, 340 K, 370 K)
[1]   Yu H R, Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnology Advances, 2014, 32(2): 308-315.
doi: 10.1016/j.biotechadv.2013.10.012
[2]   Victorino da Silva Amatto I, Gonsales da Rosa-Garzon N, Antônio de Oliveira Simões F, et al. Enzyme engineering and its industrial applications. Biotechnology and Applied Biochemistry, 2021: 2117. DOI: 10.1002/bab.2117.
doi: 10.1002/bab.2117
[3]   Eijsink V G H, Bjørk A, Gåseidnes S, et al. Rational engineering of enzyme stability. Journal of Biotechnology, 2004, 113(1-3): 105-120.
doi: 10.1016/j.jbiotec.2004.03.026
[4]   Xu P, Ni Z F, Zong M H, et al. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. International Journal of Biological Macromolecules, 2020, 150: 9-15.
doi: 10.1016/j.ijbiomac.2020.02.033
[5]   Dotsenko A S, Dotsenko G S, Rozhkova A M, et al. Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie, 2020, 176: 103-109.
doi: S0300-9084(20)30139-5 pmid: 32621943
[6]   Jochens H, Aerts D, Bornscheuer U T. Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Engineering, Design and Selection, 2010, 23(12): 903-909.
doi: 10.1093/protein/gzq071 pmid: 20947674
[7]   Li S F, Xu J Y, Bao Y J, et al. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability. Journal of Biotechnology, 2015, 210: 8-14.
doi: 10.1016/j.jbiotec.2015.06.406
[8]   Pezeshgi Modarres H, Dorokhov B D, Popov V O, et al. Understanding and engineering thermostability in DNA ligase from Thermococcus sp. 1519. Biochemistry, 2015, 54(19): 3076-3085.
pmid: 25900264
[9]   Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering. Computational and Structural Biotechnology Journal, 2012, 2(3): e201209010.
doi: 10.5936/csbj.201209010
[10]   Modarres H P, Mofrad M R, Sanati-Nezhad A. Protein thermostability engineering. RSC Advances, 2016, 6(116): 115252-115270.
doi: 10.1039/C6RA16992A
[11]   Montanucci L, Fariselli P, Martelli P L, et al. Predicting protein thermostability changes from sequence upon multiple mutations. Bioinformatics, 2008, 24(13): i190-i195.
doi: 10.1093/bioinformatics/btn166
[12]   Böhm G, Jaenicke R. Relevance of sequence statistics for the properties of extremophilic proteins. International Journal of Peptide and Protein Research, 1994, 43(1): 97-106.
pmid: 7908011
[13]   Gromiha M M, Oobatake M, Sarai A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophysical Chemistry, 1999, 82(1): 51-67.
pmid: 10584295
[14]   Zhao W, Wang X Z, Deng R Q, et al. Discrimination of thermostable and thermophilic lipases using support vector machines. Protein and Peptide Letters, 2011, 18(7): 707-717.
pmid: 21342095
[15]   Lopez-Camacho C, Salgado J, Lequerica J L, et al. Amino acid substitutions enhancing thermostability of Bacillus polymyxa β-glucosidase A. Biochemical Journal, 1996, 314(3): 833-838.
doi: 10.1042/bj3140833
[16]   Liu Y H, Yuan D J, Zhao Z X, et al. A novel strategy to improve the thermostability of Penicillium camembertii mono-and di-acylglycerol lipase. Biochemical and Biophysical Research Communications, 2018, 500(3): 639-644.
doi: 10.1016/j.bbrc.2018.04.123
[17]   Guruprasad K, Rajkumar S. Gβ- and gγ-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials. Journal of Biosciences, 2000, 25(2): 143-156.
pmid: 10878855
[18]   Yu H R, Yan Y H, Zhang C, et al. Two strategies to engineer flexible loops for improved enzyme thermostability. Scientific Reports, 2017, 7: 41212.
doi: 10.1038/srep41212
[19]   于浩然. 理性设计改造荧光素酶的热稳定性. 天津: 天津大学, 2014.
[19]   Yu H R. Engineering thermostability of luciferase by rational design. Tianjin: Tianjin University, 2014.
[20]   Mamonova T B, Glyakina A V, Galzitskaya O V, et al. Stability and rigidity/flexibility-two sides of the same coin. Biochimica et Biophysica Acta, 2013, 1834(5): 854-866.
doi: 10.1016/j.bbapap.2013.02.011 pmid: 23416444
[21]   Wang X Y, Ma R, Xie X M, et al. Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering. Scientific Reports, 2017, 7: 15287.
doi: 10.1038/s41598-017-12659-y
[22]   Nisha M, Satyanarayana T. Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Applied Microbiology and Biotechnology, 2013, 97(14): 6279-6292.
doi: 10.1007/s00253-012-4538-6 pmid: 23132347
[23]   Damnjanović J, Nakano H, Iwasaki Y. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Biotechnology and Bioengineering, 2014, 111(4): 674-682.
doi: 10.1002/bit.25149 pmid: 24222582
[24]   Liu L, Yu H R, Du K, et al. Enhanced trypsin thermostability in Pichia pastoris through truncating the flexible region. Microbial Cell Factories, 2018, 17(1): 165.
doi: 10.1186/s12934-018-1012-x
[25]   Yang T C, Legault S, Kayiranga E A, et al. The N-terminal β-sheet of the hyperthermophilic endoglucanase from Pyrococcus horikoshii is critical for thermostability. Applied and Environmental Microbiology, 2012, 78(9): 3059-3067.
doi: 10.1128/AEM.07576-11
[26]   Chen J, Yu H M, Liu C C, et al. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. Journal of Biotechnology, 2013, 164(2): 354-362.
doi: 10.1016/j.jbiotec.2013.01.021
[27]   Liu L, Deng Z M, Yang H Q, et al. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability. Applied and Environmental Microbiology, 2014, 80(3): 798-807.
doi: 10.1128/AEM.03045-13
[28]   Niu C T, Zhu L J, Xu X, et al. Rational design of disulfide bonds increases thermostability of a mesophilic 1, 3-1, 4-β-glucanase from Bacillus terquilensis. PLoS One, 2016, 11(4): e0154036.
doi: 10.1371/journal.pone.0154036
[29]   Bi J H, Chen S H, Zhao X H, et al. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Applied Microbiology and Biotechnology, 2020, 104(17): 7551-7562.
doi: 10.1007/s00253-020-10764-z
[30]   Wang R, Wang S, Xu Y, et al. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations. International Journal of Biological Macromolecules, 2020, 160: 1189-1200.
doi: S0141-8130(20)33412-7 pmid: 32485250
[31]   Jiang X, Wang Y R, Wang Y, et al. Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chemistry, 2021, 342: 128270.
doi: 10.1016/j.foodchem.2020.128270
[32]   Sakabe M, Asanuma D, Kamiya M, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. Journal of the American Chemical Society, 2013, 135(1): 409-414.
doi: 10.1021/ja309688m
[33]   Pikkemaat M G, Linssen A B M, Berendsen H J C, et al. Molecular dynamics simulations as a tool for improving protein stability. Protein Engineering, Design and Selection, 2002, 15(3): 185-192.
doi: 10.1093/protein/15.3.185
[34]   Zhang L J, Tang X M, Cui D B, et al. A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107. Protein Science, 2014, 23(1): 110-116.
doi: 10.1002/pro.2388
[35]   Tu T, Luo H Y, Meng K, et al. Improvement in thermostability of an Achaetomium sp. strain Xz8 endopolygalacturonase via the optimization of charge-charge interactions. Applied and Environmental Microbiology, 2015, 81(19): 6938-6944.
doi: 10.1128/AEM.01363-15
[36]   You S, Tu T, Zhang L J, et al. Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge-charge interactions. Biotechnology for Biofuels, 2016, 9: 124.
doi: 10.1186/s13068-016-0544-8
[37]   Yang M, Yang S X, Liu Z M, et al. Rational design of alginate lyase from Microbulbifer sp. Q7 to improve thermal stability. Marine Drugs, 2019, 17(6): 378.
doi: 10.3390/md17060378
[38]   Ren Y X, Luo H Y, Huang H Q, et al. Improving the catalytic performance of Proteinase K from Parengyodontium album for use in feather degradation. International Journal of Biological Macromolecules, 2020, 154: 1586-1595.
doi: 10.1016/j.ijbiomac.2019.11.043
[39]   Guo Y J, Tu T, Zheng J, et al. Improvement of BsAPA aspartic protease thermostability via autocatalysis-resistant mutation. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10505-10512.
doi: 10.1021/acs.jafc.9b03959
[40]   Matsumiya Y, Nishikawa K, Aoshima H, et al. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site. Journal of Biochemistry, 2004, 135(4): 547-553.
pmid: 15115781
[41]   Matsumiya Y, Murata N, Inouye K, et al. Further stabilization of Leu^155 mutant thermolysins by mutation of an autodegradation site. Applied Biochemistry and Biotechnology, 2012, 166(3): 735-743.
doi: 10.1007/s12010-011-9462-1 pmid: 22139731
[42]   Niu C F, Yang P L, Luo H Y, et al. Engineering of Yersinia phytases to improve pepsin and trypsin resistance and thermostability and application potential in the food and feed industry. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7337-7344.
doi: 10.1021/acs.jafc.7b02116
[43]   Sun Z T, Liu Q, Qu G, et al. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chemical Reviews, 2019, 119(3): 1626-1665.
doi: 10.1021/acs.chemrev.8b00290
[44]   Li Y F, Hu F J, Wang X M, et al. A rational design for trypsin-resistant improvement of armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. Journal of Biotechnology, 2013, 163(4): 401-407.
doi: 10.1016/j.jbiotec.2012.12.018
[45]   Zhang S B, Wu Z L. Identification of amino acid residues responsible for increased thermostability of feruloyl esterase a from Aspergillus niger using the PoPMuSiC algorithm. Bioresource Technology, 2011, 102(2): 2093-2096.
doi: 10.1016/j.biortech.2010.08.019
[46]   Kellogg E H, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins, 2011, 79(3): 830-838.
doi: 10.1002/prot.22921
[47]   Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 2005, 33(suppl_2): W306-W310.
doi: 10.1093/nar/gki375
[48]   Guerois R, Nielsen J E, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. Journal of Molecular Biology, 2002, 320(2): 369-387.
doi: 10.1016/S0022-2836(02)00442-4
[49]   李冠霖. 脂肪酶/酯酶的理性设计和改造研究. 武汉: 华中科技大学, 2018.
[49]   Li G L. Rational design and modification of lipase/esterase. Wuhan: Huazhong University of Science and Technology, 2018.
[50]   You S, Xie C, Ma R, et al. Improvement in catalytic activity and thermostability of a GH10 xylanase and its synergistic degradation of biomass with cellulase. Biotechnology for Biofuels, 2019, 12: 278.
doi: 10.1186/s13068-019-1620-7
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[3] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[4] ZHANG Yu-fu, WANG Jian-wen, LI Song-tao, ZHU Zhang-liang, LU Fu-ping, MAO Shu-hong, QIN Hui-min. The Expression, Purification and Structural Analysis of Cholesterol Oxidase ChOG[J]. China Biotechnology, 2017, 37(6): 43-49.
[5] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[6] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[7] ZHANG Wei, WANG Ya-wei, CHEN Feng, ZHOU Ying, XIONG Hai-rong. Gene Synthesis, Expression and Characterization of a Thermostable Endo-β-1, 4-mannanase[J]. China Biotechnology, 2014, 34(8): 41-46.
[8] LI Gao, YANG Qi, ZHANG Ye, WANG Yin, ZHANG Tao, WANG Rui-gang, LI Guo-jing. Cloning and Analysis of the Gene Encoding Cinnamoyl-CoA Reductase from Caragana korshinkii Kom[J]. China Biotechnology, 2014, 34(1): 50-56.
[9] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[10] ZHANG Le, CHEN Xuan-qin, WANG Lin, CHEN Li-mei, LI Kun-zhi. Cloning,Prokaryotic Expression and Function Analysis of GmALDH 3-1 from Danbo Black Soybean[J]. China Biotechnology, 2013, 33(5): 86-92.
[11] LI Gao, YANG Qi, ZHANG Ye, WANG Rui-gang, LI Guo-jing. Cloning and Sequence Analysis of the CkC3H Gene from Caragana korshinskii Kom. and Preliminary Studies of Its Function[J]. China Biotechnology, 2013, 33(4): 61-67.
[12] LI Si-jia, WANG Ya-wei, FU Zheng, WANG Wen-jun, Ossi Turunen, XIONG Hai-rong. Expression of Thermomyces lanuginosus Xylanase 1YNA and Its Disulphide Bridge Mutant in Pichia Pastoris[J]. China Biotechnology, 2013, 33(3): 74-79.
[13] DENG Hui, CHEN Sheng, CHEN Jian, WU Jing. Effect of T26P and A30P Site-Directed Mutagenesis on Thermostability and Activity of Glucose Isomerases from Thermobifida fusca[J]. China Biotechnology, 2013, 33(10): 67-72.
[14] . Isolation and transient expression assay of PEAMT gene promoter from Salicornia europaea[J]. China Biotechnology, 2008, 28(8): 69-73.
[15] Yao-Jun WANG Gao Qiang Mi SUN Jian-Hua HAO . Studies on characterization and applications of carboxylesterases from hyperthermophiles[J]. China Biotechnology, 2008, 28(3): 118-122.