Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 75-81    DOI: 10.13523/j.cb.20191009
    
Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris
REN Li-qiong,WU Jing,CHEN Sheng()
1 State Key Laboratory of Food Science and Technology, School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Joint Laboratory of Food Safety International Cooperation of the Ministry of Education, Jiangnan University,Wuxi 214122,China
Download: HTML   PDF(669KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

α-Glucosidase can cleave α-1,4 glucosidic linkages from the non-reducing end of oligosaccharide substrates to release glucoses, the enzyme also catalyzes transglucosylation, synthesizing α-1,6 glucosidic linkages. α-Glucosidase can be used in various fields such as isomaltooligosaccharide production, metabolic physiology research, disease prevention and treatment. Aspergillus nidulans-derived α-glucosidase has low enzymatic activity and degradation of protein in exogenous expression in Pichia pastoris. In order to improve the exogenous expression of Aspergillus nidulans-derived α-glucosidase in Pichia pastoris. A recombinant strain P.pastoris KM71/pPIC9K-AgbB/pPICZA-Mpr1 was constructed based on P.pastoris KM71/pPIC9K-AgbB which has been recombinantly expressed, finally optimized for 3.6L tank fermentation. The high-copy recombinant co-expressing strain obtained by screening showed that α-glucosidase transglucoside activity and protein content can reach 22.56U/ml and 0.52mg/ml in shake flask fermentation, respectively, which was 1.92 times and 1.27 times of the original strain in shake flask fermentation. After optimizing the temperature and methanol induction concentration of the recombinant co-expressing strain in 3.6L tank fermentation, the optimum fermentation conditions was 1% methanol concentration at 25℃.The enzyme activity and protein content of the co-expressed strains can reach 128.12U/ml and 1.81mg/ml, respectively, which was 1.96 times and 1.50 times of the original strain in 3.6L tank fermentation.



Key wordsN-acetyltransferase (Mpr1)      α-Glucosidase      P. pastoris KM71      Co-expression      Fermentation optimization     
Received: 05 March 2019      Published: 12 November 2019
ZTFLH:  Q591.4  
Corresponding Authors: Sheng CHEN     E-mail: chensheng@jiangnan.edu.cn
Cite this article:

REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris. China Biotechnology, 2019, 39(10): 75-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191009     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/75

Fig.1 P. pastoris KM71/ pPIC9K-AgdB fermentation in 3.6L tank
Fig.2 Nucleotides from PCR electrophoresis verification M: DNA2000 maker; 1, 2: Mpr1 PCR band
Fig.3 Assay of recombinant plasmid digestion M:DNA5000 maker;1,2:Double enzyme digestion verification
Fig.4 Production of enzymes by P. pastoris KM71/ pPIC9K-AgdB/pPICZ-Mpr1 at induced different temperatures
发酵过程参数 诱导阶段温度(℃)
25 28 30
诱导干重(g/L) 37.2±0.5 37.2±0.5 37.2±0.5
最终干重(g/L) 148.7±3.3 118.9±1.2 92.9±1.1
最终酶活(U/ml) 107.9±4.8 96.7±4.8 87.7±1.3
甲醇消耗总量(g/L) 890±11.4 765±11.3 615±10.3
菌株对甲醇得率(g/g) 0.17 0.16 0.15
α-葡糖苷酶生产强度[U/(ml·h)] 0.82±0.2 0.73±0.2 0.66±0.1
Table 1 P.pastoris KM71/ pPIC9K-AgdB/pPICZ-Mpr1 fermentation at different induced temperatures
Fig.5 P. Pastoris KM71/ pPIC9K-AgdB/pPICZA-Mpr1 production at different methanol concentrations
参数 诱导阶段浓度(%)
0.5 1.0 1.5
诱导干重(g/L) 37.2 ± 0.5 37.2 ± 0.5 37.2 ± 0.5
最终干重(g/L) 96.3 ± 1.3 118.9 ± 1.2 76.6 ± 1.1
最终酶活(U/ml) 91.2 ± 3.6 96.7 ± 4.8 82.3 ± 3.3
甲醇消耗总量(g/L) 645 ± 11.4 765 ± 11.3 710 ± 10.3
菌株对甲醇得率(g/g) 0.15 0.16 0.11
α-葡糖苷酶生产强度[U/(ml·h)] 0.70 ± 0.2 0.73 ± 0.2 0.62 ±0.1
Table 2 P.pastoris KM71/ pPIC9K-AgdB/pPICZ-Mpr1 fermentation at different methanol concentrations
[1]   胡先望, 杨震, 陈朋 , 等. α-葡萄糖苷酶的研究进展. 甘肃科学学报, 2011,23(1):143-148.
[1]   Hu X W, Yang Z, Chen P , et al. Progress in research on α-glucosidase. Journal of Gansu Sciences, 2011,23(1):143-148.
[2]   毕金峰, 刘长江 . 低聚异麦芽糖的特性及其应用. 粮油食品科技, 2002,10(5):42-44.
[2]   Bi J F, Liu C J . Properties and application of isomaltooligosaccharide. Science & Technology of Cereals Oils & Foods, 2002,10(5):42-44.
[3]   刘旭 . 黑曲霉α-葡萄糖苷酶在毕赤酵母中的高效表达研究. 无锡:江南大学, 2013.
[3]   Liu X . Study on high expression of α-glucosidase in Pichia pastoris. Wuxi: Jiangnan University, 2013.
[4]   陈丽华, 潘自红, 马威 . α-葡萄糖苷酶性质、制备及其应用研究. 食品研究与开发, 2009,30(7):163-165.
[4]   Chen L H, Pan Z H, Ma W . Properties, preparation and application of α-glucosidase. Food Research and Development, 2009,30(7):163-165.
[5]   Cereghino J L, Cregg J M . Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 2000,24(1):45-66.
[6]   高庆华, 董聪, 王玥 , 等. 共表达分子伴侣 PDI 和 Ero1 对葡萄糖氧化酶在毕赤酵母中表达的影响. 生物技术通报, 2018,34(7):174-179.
[6]   Gao Q H, Dong C, Wang Y , et al. Enhancement of glucose oxidase in Pichia pastoris by co-expressing chaperone PDI and Ero1. Biotechnology Bulletin, 2018,34(7):174-179.
[7]   Takagi H, Shichiri M, Takemura M , et al. Saccharomyces cerevisiae sigma 1278b has novel genes of the n-acetyltransferase gene superfamily required for l-proline analogue resistance. Journal of Bacteriology, 2000,182(15):4249-4256.
[8]   Nomura M, Takagi H . Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proceedings of the National Academy of Sciences, 2004,101(34):12616-12621.
[9]   Ishchuk O P, Abbas C A, Sibirny A A . Heterologous expression of Saccharomyces cerevisiae Mpr1 gene confers tolerance to ethanol and L-azetidine-2-carboxylic acid in Hansenula polymorpha. Journal of Industrial Microbiology & Biotechnology, 2010,37(2):213-218.
[10]   Sasano Y, Takahashi S, Shima J , et al. Antioxidant n-acetyltransferase Mpr1/2 of industrial baker ’s yeast enhances fermentation ability after air-drying stress in bread dough. International Journal of Food Microbiology, 2010,138(1-2):181-185.
[11]   Wu D, Zhu H, Chu J , et al. N-acetyltransferase co-expression increases α-glucosidase expression level in Pichia pastoris. Journal of Biotechnology, 2019,289(19):26-30.
[12]   Du X Y, Takagi H . N-acetyltransferase mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Applied Microbiology and Biotechnology, 2007,75(6):1343-1351.
doi: 10.1007/s00253-007-0940-x
[13]   朱海峰 . N-乙酰转移酶性质研究、在Picha pastoris KM71/pPIC9K-αglu中共表达及重组菌株发酵过程优化研究. 无锡:江南大学, 2015.
[13]   Zhu H F . Properties of N- acetyl transferase, co-expression in Picha pastoris KM71/pPIC9K-αglu and fermentation optimization of recombinant strain. Wuxi: Jiangnan University, 2015.
[14]   陈磊, 陈晟, 吴敬 , 等. 基于体外分子进化技术提高弯曲芽孢杆菌 CCTCC 2015368 β-淀粉酶的热稳定性. 生物工程学报, 2018,34(3):255-263.
[14]   Chen L, Chen S, Wu J , et al. Enhancing thermostability of β-amylase from Bacillus flexus.CCTCC 2015368 based on in vitro molecular evolution. Chinese Journal of Biotechnology, 2018,34(3):255-263.
[15]   吉得宁, 宿玲恰, 吴敬 , 等. 共表达N-乙酰转移酶和磷脂酶重组菌的构建及发酵优化. 食品与生物技术学报, 2018,37(8):853-860.
[15]   Ji D N, Su L J, Wu J , et al. Construction of co-expressed n-acetyltransferase and phospholipase gene in recombinant strain and optimization of fermentation conditions. Journal of Food Science and Biotechnology, 2018,37(8):853-860.
[16]   贾林 . 毕氏酵母发酵过程建模和优化. 上海:上海交通大学, 2007.
[16]   Jia L . Modeling and optimization of Pichia pastoris fermentation process. Shanghai:Shanghai Jiao Tong University, 2007.
[17]   吉得宁 . Fusarium oxysporum磷脂酶B在毕赤酵母中的重组表达、发酵及应用研究. 无锡:江南大学, 2016.
[17]   Ji D N . Expression,fermentation and application of phospholipase B from Fusarium oxysporum in the Pichia pastoris. Wuxi:Jiangnan University, 2016.
[18]   康国凯, 冯国栋, 曹坤琳 , 等. 重组毕赤酵母(Pichia pastoris)高产Lunasin的发酵工艺优化. 中国生物工程杂志, 2016,36(8):73-79
[18]   Kang G K, Fen G D, Cao K L , et al. Optimization for high production fermentation of Lunasin form recombinant Pichia pastoris. China Biotechnology, 2016,36(8):73-79.
[19]   Xiao A F, Zhou X S, Zhou L , et al. Detection of intracellular reactive oxygen species by flow cytometry in Pichia pastoris fermentation. Chinese Journal of Biotechnology, 2006,22(2):273-277.
[20]   谢静莉, 张励, 叶勤 , 等. Muts型基因重组巴斯德毕赤酵母高密度发酵过程中甲醇流加的控制. 食品与生物技术学报, 2003,22(1):12-15.
[20]   Xie J L, Zhang L, Ye Q , et al. Methanol feeding control in high-density cultivation of Muts recombination Pichia pastoris. Journal of Food Science and Biotechnology, 2003,22(1):12-15.
[21]   李会宣, 董向峰, 高健 , Pichia pastoris醇氧化酶基因AOX1启动子研究进展, 生物技术, 2013,23(4):83-87.
[21]   Li H X, Dong X F, Gao J . Progress in promoter of alcohol oxidase gene AOX1 from Pichia pastoris. Biotechnology, 2013,23(4) : 83-87.
[1] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[2] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[3] Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses[J]. China Biotechnology, 2019, 39(3): 37-45.
[4] LIANG Dong, XING Yong-qiang, CAI Lu. The Construction and Analysis of the Coexpression Network for the Gene Related to Renal Tumor[J]. China Biotechnology, 2016, 36(2): 30-37.
[5] LIU Hui-li, LI Yuan-yuan, JU Rui-cheng, ZHAO Hong-tao, YANG Qing. Isolation, Identification and Fermentation Optimization of Antagonistic Bacillus subtilis KC-5[J]. China Biotechnology, 2014, 34(3): 96-102.
[6] ZHANG Huan, HUANG Si-chao, CAI Shao-hui. Development of 2A Peptide-based Strategies for Constructing Multicistronic Expression Vectors[J]. China Biotechnology, 2013, 33(1): 104-108.
[7] GAO Hui-hui, CHEN Sheng, WU Jing, CHEN Jian. Fermentation Optimization in Shake Flasks of Corynebacterium nitrilophilus NHase Applied in Surface Modification of Polyacrylonitrile Fibers[J]. China Biotechnology, 2011, 31(8): 54-60.
[8] JI Li-ping, WU Dan, WU Jing, CHEN Jian. Optimization of Fermentation in Shake Flasks for Recombinant γ-CGTase Expression in E. coli[J]. China Biotechnology, 2011, 31(10): 50-56.
[9] CHAN Zhu-hua, LIU Yang, SU Yu-bin, SHAN Da-peng, WANG Shui-qi, ZENG Run-ying. Fermentation Conditions Optimization of Deep Sea Gene Engineering Strain LIP001 Producing Cold-adaptive Lipase[J]. China Biotechnology, 2011, 31(04): 65-70.
[10] CAI Heng, WANG Yan, WAN Hong-gui, JIANG Dao-hang, WANG Han-ling, ZHAO Zong-song. Research Progress of Spinosad Produced by Saccharopolyspora spinosa[J]. China Biotechnology, 2011, 31(02): 124-129.
[11] HE Zhang-hua, WANG Yang, ZHAO Jun, LIU Xiao-jie, ZHANG Li-hua, WANG Dong, SHI Ming-lei, HUANG Fen, YOU Ping, ZHAO Zhi-hu. Construction of a Vector Suitable for the Tandem Coexpression of Multiple Genes by a Single Plasmid[J]. China Biotechnology, 2011, 31(01): 40-45.
[12] LU Wei-ning, LIAO Yu-ling. Screening and Fermentation Optimization of Corynebacterium acetoacidophilum Mutant for High-level Production of L-proline[J]. China Biotechnology, 2010, 30(11): 70-74.
[13] BAO Xi-Jun, WEI Dong-Zhi, CHEN E-Ling, ZHOU Jin-Song, ZHANG Guo-Jun, SUN Jing, QIU Yi. Optimization of Fermentation Conditions for High Expression Productivity of Recombinant TRAIL[J]. China Biotechnology, 2009, 29(10): 74-80.
[14] MO Gong-Gui- Xu-Chuan-Hua- She-Yong. Advances in Lycopene Production by Blakeslea trispora Fermentation[J]. China Biotechnology, 2009, 29(03): 105-109.
[15] QI Xianghui Tian LIANG. Molecular Cloning, Co-expression and Characterization of dhaF and dhaG Genes Encoding Glycerol Dehydratase Reactivating Factor of Citrobacter freundii[J]. China Biotechnology, 2009, 29(01): 39-43.