Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 55-61    DOI: 10.13523/j.cb.20190608
    
Progress in Aptamer Based Tumor Immunotherapy
Hai-yin LV,Teng-fei WANG,Ren-jun PEI()
Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences, Division of Nanobiomedicine, Suzhou 215123,China
Download: HTML   PDF(548KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tumor immunotherapy is aimed to inhibit the proliferation of tumor cell and kill the tumors through regulating the immunity of the body. In recent years, tumor immunotherapy has gained great progress in clinical practice, especially in the aspect of blocking the immune check point. The main methods for tumor immunotherapy are antibody therapy and adoptive cellular therapy. However, there are some shortages in the present immunotherapy, such as high side effects and high cost for treatment. Therefore, it is necessary to develop new methods that are efficient, safe and low cost. Aptamers are signal-strand DNA or RNA oligo-nucleotides obtained throughout systematic evolution of ligands by exponential enrichment (SELEX).The aptamers are similar to antibody, which can bind to their targets with high affinity and specificity. Moreover, aptamers have the advantages of low immunogenicity, penetrating tissues easily, convenient chemical synthesis and modification, and have the potential to take the similar role as the antibody for tumor immunotherapy.Presents the new applications of aptamers in cancer immunotherapy was reviewed, mainly including immune checkpoint immunotherapy, bispecific aptamer immunotherapy, aptamer-targeting siRNA immunotherapy and antibody-aptamer combination immunotherapy.



Key wordsAptamer      Tumor immunotherapy      Bispecific aptamer      Immune checkpoint     
Received: 15 November 2018      Published: 12 July 2019
ZTFLH:  Q5R73  
Corresponding Authors: Ren-jun PEI     E-mail: rjpei2011@sinano.ac.cn
Cite this article:

Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy. China Biotechnology, 2019, 39(6): 55-61.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190608     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/55

Fig.1 The process of selecting aptamers
Fig.2 The aptamers achieve anti-tumor effect through blocking PD1/PD-L1 immune checkpoint
Fig.3 SiRNA is delivered by aptamers to mediate the expression of targeted gene
[1]   Johnson L A, June C H . Driving gene-engineered T cell immunotherapy of cancer. Cell Res, 2017,27(1):38-58.
[2]   Yee C . Adoptive T cell therapy: points to consider. Curr Opin Immunol, 2018,51:197-203.
doi: 10.1016/j.coi.2018.04.007
[3]   Ligtenberg M A, Pico De Coana Y, Shmushkovich T , et al. Self-delivering RNAi targeting PD-1 improves tumor-specific T cell functionality for adoptive cell therapy of malignant melanoma. Mol Ther, 2018,26(6):1482-1493.
doi: 10.1016/j.ymthe.2018.04.015
[4]   Vormittag P, Gunn R, Ghorashian S , et al. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol, 2018,53:164-181.
doi: 10.1016/j.copbio.2018.01.025
[5]   Arabi F, Torabi-Rahvar M, Shariati A , et al. Antigenic targets of CAR T cell therapy. A retrospective view on clinical trials. Exp Cell Res, 2018,369(1):1-10.
doi: 10.1016/j.yexcr.2018.05.009
[6]   Ramello M C, Haura E B, Abate-Daga D . CAR-T cells and combination therapies: What’s next in the immunotherapy revolution. Pharmacol Res, 2018,129:194-203.
doi: 10.1016/j.phrs.2017.11.035
[7]   Khalil D N, Smith E L, Brentjens R J , et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol, 2016,13(5):273-290.
[8]   Simpson A, Caballero O . Monoclonal antibodies for the therapy of cancer. BMC Proceedings, 2014,8(Suppl 4):6.
[9]   Almagro J C, Daniels-Wells T R, Perez-Tapia S M , et al. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front Immunol, 2017,8:1751.
[10]   Thomas A, Teicher B A, Hassan R . Antibody-drug conjugates for cancer therapy. The Lancet Oncology, 2016,17(6):e254-e262.
doi: 10.1016/S1470-2045(16)30030-4
[11]   Nasiri H, Valedkarimi Z, Aghebati-Maleki L , et al. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J Cell Physiol, 2018,233(9):6441-6457.
doi: 10.1002/jcp.26435
[12]   Krishnamurthy A, Jimeno A . Bispecific antibodies for cancer therapy: A review. Pharmacol Ther, 2018,185:122-134.
doi: 10.1016/j.pharmthera.2017.12.002
[13]   Kontermann R E, Brinkmann U . Bispecific antibodies. Drug Discov Today, 2015,20(7):838-847.
doi: 10.1016/j.drudis.2015.02.008
[14]   Klebanoff C A, Rosenberg S A, Restifo N P . Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med, 2016,22(1):26-36.
[15]   Lyons J M, Schwimer J E, Anthony C T , et al. The role of VEGF pathways in human physiologic and pathologic angiogenesis. J Surg Res, 2010,159(1):517-527.
doi: 10.1016/j.jss.2008.12.014
[16]   Groff K, Brown J, Clippinger A J . Modern affinity reagents: Recombinant antibodies and aptamers. Biotechnol Adv, 2015,33(8):1787-1798.
doi: 10.1016/j.biotechadv.2015.10.004
[17]   Lee A, Sun S, Sandler A , et al. Recent progress in therapeutic antibodies for cancer immunotherapy. Curr Opin Chem Biol, 2018,44:56-65.
doi: 10.1016/j.cbpa.2018.05.006
[18]   Zhou Z, Liu M, Jiang J . The potential of aptamers for cancer research. Anal Biochem, 2018,549:91-95.
doi: 10.1016/j.ab.2018.03.008
[19]   Soldevilla M M, Villanueva H, Pastor F . Aptamers: A feasible technology in cancer immunotherapy. J Immunol Res, 2016,2016:1083738.
[20]   Hu P P . Recent advances in aptamers targeting immune system. Inflammation, 2017,40(1):295-302.
doi: 10.1007/s10753-016-0437-9
[21]   Kim M, Kim D M, Kim K S , et al. Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules, 2018,23(4):830.
doi: 10.3390/molecules23040830
[22]   Pastor F . Aptamers: A new technological platform in cancer immunotherapy. Pharmaceuticals 2016,9(4):64.
doi: 10.3390/ph9040064
[23]   Wu X, Shaikh A B, Yu Y , et al. Potential diagnostic and therapeutic applications of oligonucleotide aptamers in breast cancer. Int J Mol Sci, 2017,18(9):1851.
doi: 10.3390/ijms18091851
[24]   Ghahremani F, Shahbazi-Gahrouei D, Amirhosein Kefayat , et al. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Advances, 2018,8(8):4249-4258.
doi: 10.1039/C7RA11116A
[25]   Ai J, Ga L, Wang Y . A dual-targeting AS1411-folic acid fluorescent nanocomposite for cancer cell and drug delivery. Analytical Methods, 2018,10(17):1949-1951.
doi: 10.1039/C8AY00410B
[26]   Yoon S, Huang K W, Reebye V , et al. Aptamer-drug conjugates ofactive metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids, 2017,6:80-88.
doi: 10.1016/j.omtn.2016.11.008
[27]   Kong D H, Kim M R, Jang J H , et al. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int J Mol Sci, 2017,18(8):1786.
doi: 10.3390/ijms18081786
[28]   Zhang X, Peng L, Liang Z , et al. Effects of aptamer to U87-EGFRvIII cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol Ther Nucleic Acids, 2018,10:438-449.
doi: 10.1016/j.omtn.2018.01.001
[29]   Morita Y, Leslie M, Kameyama H , et al. Aptamer therapeutics in cancer: Current and future. Cancers 2018,10(3):80.
doi: 10.3390/cancers10030080
[30]   Prodeus A, Abdul-Wahid A, Fischer N W , et al. Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids, 2015,4:e237.
doi: 10.1038/mtna.2015.11
[31]   Wang H, Lam C H, Li X , et al. Selection of PD1/PD-L1 X-aptamers. Biochimie, 2018,145:125-130.
doi: 10.1016/j.biochi.2017.09.006
[32]   Lai W Y, Huang B T, Wang J W , et al. A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids, 2016,5(12):e397.
[33]   Huang B T, Lai W Y, Chang Y C , et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther Nucleic Acids, 2017,8:520-528.
doi: 10.1016/j.omtn.2017.08.006
[34]   Pratico E D, Sullenger B A, Nair S K . Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40. Nucleic Acid Ther, 2013,23(1):35-43.
doi: 10.1089/nat.2012.0388
[35]   Dollins C M, Nair S, Boczkowski D , et al. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol, 2008,15(7):675-682.
doi: 10.1016/j.chembiol.2008.05.016
[36]   Liu X, Yan H, Liu Y , et al. Targeted cell-cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small, 2011,7(12):1673-1682.
doi: 10.1002/smll.v7.12
[37]   Rajagopalan A, Berezhnoy A, Schrand B , et al. Aptamer-targeted attenuation of IL-2 signaling in CD8 + T cells enhances antitumor immunity. Mol Ther, 2017,25(1):54-61.
doi: 10.1016/j.ymthe.2016.10.021
[38]   Schrand B, Berezhnoy A, Brenneman R , et al. Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer Immunol Res, 2014,2(9):867-877.
doi: 10.1158/2326-6066.CIR-14-0007
[39]   Pastor F, Kolonias D, Mcnamara J O , et al. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther, 2011,19(10):1878-1886.
doi: 10.1038/mt.2011.145
[40]   Pastor F . Tumor-targeted costimulation by using bi-specific aptamers. Cancer Cell Microenviron, 2016,3:e1333.
[41]   Soldevilla M M, Villanueva H, Casares N , et al. MRP1-CD28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells. Oncotarget, 2016,7(17):23182-23196.
[42]   O’donnell J S, Smyth M J, Teng M W L . PD1 functions by inhibiting CD28-mediated co-stimulation. Clin Transl Immunology, 2017,6(5):e138.
doi: 10.1038/cti.2017.15
[43]   Khedri M, Rafatpanah H, Abnous K , et al. Cancer immunotherapy via nucleic acid aptamers. Int Immunopharmacol, 2015,29(2):926-936.
doi: 10.1016/j.intimp.2015.10.013
[44]   Alshaer W, Hillaireau H, Vergnaud J , et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release, 2018,271:98-106.
doi: 10.1016/j.jconrel.2017.12.022
[45]   De Almeida C E B, Alves L N, Rocha H F , et al. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer. Int J Pharm, 2017,525(2):334-342.
doi: 10.1016/j.ijpharm.2017.03.086
[46]   Berezhnoy A, Castro I, Levay A , et al. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest, 2014,124(1):188-197.
doi: 10.1172/JCI69856
[47]   Heo K, Min S W, Sung H J , et al. An aptamer-antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. J Control Release, 2016,229:1-9.
doi: 10.1016/j.jconrel.2016.03.006
[48]   Hu Z, He J, Gong W , et al. TLS11a aptamer/CD3 antibody anti-tumor system for liver cancer. J Biomed Nanotechnol, 2018,14(9):1645-1653.
doi: 10.1166/jbn.2018.2619
[49]   Keefe A D, Pai S, Ellington A . Aptamers as therapeutics. Nat Rev Drug Discov, 2010,9(7):537-550.
doi: 10.1038/nrd3141
[1] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[2] LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation[J]. China Biotechnology, 2020, 40(10): 35-42.
[3] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[4] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[5] HE Min-yu, RAN Hai-tao. Aptamer Conjugated Nanomaterials for Targeted Cancer Therapeutics[J]. China Biotechnology, 2015, 35(4): 86-91.
[6] TANG De-ping, MAO Ai-hong, WANG Fang, ZHANG Hong, WANG Li, LIAO Shi-qi. Targeted Delivery of siRNA Mediated by Aptamer Modified Liposome[J]. China Biotechnology, 2015, 35(1): 54-60.
[7] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[8] ZHOU Ni, CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of An Electrochemical Aptasensor Basic on the ssDNA Aptamer of Ractopamine[J]. China Biotechnology, 2014, 34(1): 42-49.
[9] CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of an Aptasensor for Electrochemical Detection of Tetracycline[J]. China Biotechnology, 2013, 33(11): 56-62.