Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (10): 30-37    DOI: 10.13523/j.cb.20181004
Orginal Article     
Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates
Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU()
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Download: HTML   PDF(1216KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Chitinase encoding gene of Trichoderma reesei was optimized, synthesized and secretorily expressed in Pichia pastoris. The protein concentration of the expressed chitinase reached 0.17mg/ml. The optimum pH and temperature of the chitinase was 5.6 and 65℃, respectively, and enzymatic activity reached 0.52U/ml. The chitinase was continuously thermostable at 50℃. The low deacetylated chitosan was hydrolyzed by this enzyme and the composition and structure of these hydrolysates were analyzed. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS) results showed that these hydrolysates contained at least 41 different kinds of chitooligosaccharides with degree of polymerization of 2~18 and different degree of deacetylation. Nuclear magnetic resonance (NMR) results indicated that, the reducing end of these oligosaccharide fractions were mainly composed of N-Acetylglucosamine while both glucosamine and N-Acetylglucosamine were found in the non-reducing end. These results would provide a reference for study of the relationship between the structure and function of chitooligosaccharides.



Key wordsTrichoderma reesei      Chitinase      Pichia pastoris      Chitooligosaccharides      UPLC-QTOF MS      NMR     
Received: 23 June 2018      Published: 09 November 2018
ZTFLH:  Q55  
Corresponding Authors: Yu-guang DU     E-mail: ygdu@ipe.ac.cn
Cite this article:

Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates. China Biotechnology, 2018, 38(10): 30-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181004     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I10/30

Fig.1 Electrophoresis map of chitinase gene trchi18 recombinant plasmid restriction enzyme hydrolysates (a) and protein expression products (b) (a) M1: DNA marker; E1: Plasmid trchi18-pGBG1 digested with XhoⅠand NotⅠ; E2: Plasmid trchi18-pGBG1 digested with BglⅡ (b) P1: Expressed protein Trchi18; M2: Protein marker
Fig.2 TIC (a) and mass spectrogram (b) of Trchi18 hydrolysis products
Numbers Retention time (min) Determined m/z Theoretical m/z Predicted components
A1 2.55 447.7 447.2 [A2+Na]+
B1 7.29 586.6 586.2 [D1A2+H]+
C1 9.17 789.8 789.3 [D1A3+H]+
D1 10.99 993.0 992.4 [D1A4+H]+
E1 12.77 747.8 747.3 [D2A2+H]+
F1 14.39 951.0 950.4 [D2A3+H]+
G1 15.62 577.6 577.2 [D2A4+2H]2+
H1 18.65 556.6 556.2 [D3A3+2H]2+
I1 19.45 658.2 657.8 [D3A4+2H]2+
J1 20.27 759.8 759.3 [D3A5+2H]2+
K1 22.26 637.2 636.8 [D4A3+2H]2+
K2 22.26 738.8 738.3 [D4A4+2H]2+
K3 22.26 840.4 839.8 [D4A5+2H]2+
L1 24.92 717.8 717.3 [D5A3+2H]2+
L2 24.92 819.4 818.8 [D5A4+2H]2+
L3 24.92 921.0 920.4 [D5A5+2H]2+
L4 24.92 1 022.6 1 021.9 [D5A6+2H]2+
M1 27.09 798.3 797.8 [D6A3+2H]2+
M2 27.09 900.0 899.4 [D6A4+2H]2+
M3 27.09 1 001.6 1 000.9 [D6A5+2H]2+
M4 27.09 1 103.2 1 102.4 [D6A6+2H]2+
N1 29.90 878.9 878.4 [D7A3+2H]2+
N2 29.90 980.5 979.9 [D7A4+2H]2+
N3 29.90 1 082.2 1 081.4 [D7A5+2H]2+
N4 29.90 1 183.8 1 183.0 [D7A6+2H]2+
N5 29.90 1 285.3 1 284.5 [D7A7+2H]2+
O1 31.55 959.5 958.9 [D8A3+2H]2+
O2 31.55 1 061.1 1 060.4 [D8A4+2H]2+
O3 31.55 1 162.7 1 162.0 [D8A5+2H]2+
O4 31.55 1 264.4 1 263.5 [D8A6+2H]2+
O5 31.55 1 366.0 1 365.1 [D8A7+2H]2+
P1 32.79 761.5 761.0 [D9A4+3H]3+
P2 32.79 829.2 828.7 [D9A5+3H]3+
P3 32.79 896.9 896.4 [D9A6+3H]3+
P4 32.79 964.7 964.1 [D9A7+3H]3+
P5 32.79 1 032.4 1 031.8 [D9A8+3H]3+
P6 32.79 814.8 814.7 [D10A4+3H]3+
P7 32.79 882.9 882.4 [D10A5+3H]3+
P8 32.79 950.7 950.1 [D10A6+3H]3+
P9 32.79 1 018.4 1 017.7 [D10A7+3H]3+
P10 32.79 1 086.1 1 085.4 [D10A8+3H]3+
Table 1 Components identification of Trchi18 hydrolysis products
Fig.3 1H NMR (a) and 13C NMR (b) spectra of Trchi18 hydrolysis products
[1]   Lodhi G, Kim Y S, Hwang J W , et al. Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Research International, 2014,2014(1):654913.
doi: 10.1155/2014/654913 pmid: 3958764
[2]   Zou P, Yang X, Wang J , et al. Advances in characterization and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 2016,190:1174-1181.
doi: 10.1016/j.foodchem.2015.06.076 pmid: 26213092
[3]   Azuma K, Osaki T, Minami S , et al. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. Journal of Functional Biomaterials, 2015,6(1):33-49.
doi: 10.3390/jfb6010033 pmid: 25594943
[4]   Shinya T, Nakagawa T, Kaku H , et al. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Current Opinion in Plant Biology, 2015,26:64-71.
doi: 10.1016/j.pbi.2015.05.032 pmid: 26116978
[5]   Je J Y, Kim S K . Chitooligosaccharides as potential nutraceuticals: production and bioactivities//Advances in Food and Nutrition Research. Amsterdam: Elsevier BV, 2012,65:321-336.
[6]   Jung W J, Park R D . Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs, 2014,12(11):5328-5356.
doi: 10.3390/md12115328 pmid: 4245534
[7]   Han Y, Zhao L, Yu Z , et al. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. International Immunopharmacology, 2005,5(10):1533-1542.
doi: 10.1016/j.intimp.2005.04.015 pmid: 16023605
[8]   Schimpl M, Rush C L, Betou M , et al. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochemical Journal, 2012,446(1):149-157.
doi: 10.1042/BJ20120377 pmid: 22742450
[9]   Ranok A, Wongsantichon J, Robinson R C , et al. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). Journal of Biological Chemistry, 2015,290(5):2617-2629.
doi: 10.1074/jbc.M114.588905 pmid: 25477513
[10]   Hayafune M, Berisio R, Marchetti R , et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, 2014,111(3):E404-E413.
doi: 10.1073/pnas.1312099111 pmid: 24395781
[11]   Liu B, Li J F, Ao Y , et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell, 2012,24(8):3406-3419.
doi: 10.1105/tpc.112.102475 pmid: 22872757
[12]   Xu J, Wang G, Wang J , et al. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC Plant Biology, 2017,17(1):148.
doi: 10.1186/s12870-017-1096-1 pmid: 5583995
[13]   Tegl G, Ohlknecht C, Vielnascher R , et al. Cellobiohydrolases produce different oligosaccharides from chitosan. Biomacromolecules, 2016,17(6):2284-2292.
doi: 10.1021/acs.biomac.6b00547 pmid: 27214513
[14]   Roncal T, Oviedo A, Lópezz d A I , et al. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydrate Research, 2007,342(18):2750-2756.
doi: 10.1016/j.carres.2007.08.023 pmid: 17889843
[15]   Lee D X, Xia W S, Zhang J L . Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chemistry, 2008,111(2):291-295.
doi: 10.1016/j.foodchem.2008.03.054 pmid: 26047425
[16]   Martinez D, Berka R M, Henrissat B , et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 2008,26(5):553-560.
doi: 10.1038/nbt1403 pmid: 18454138
[17]   程功, 任立世, 焦思明 , 等. 纤维素酶制备低脱乙酰度壳寡糖及其组成分析. 食品科技, 2018,43(04):189-193.
[17]   Cheng G, Ren L, Jiao S , et al. Composition analysis and production of chitooligosanccharides with low degree of deacetylation by cellulase. Food Science and Technology, 2018,43(04):189-193.
[18]   Sasaki C, Varum K M, Itoh Y , et al. Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology, 2006,16(12):1242-1250.
doi: 10.1093/glycob/cwl043 pmid: 16957091
[19]   Seidl V, Huemer B, Seiboth B , et al. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS Journal, 2005,272(22):5923-5939.
doi: 10.1111/j.1742-4658.2005.04994.x pmid: 16279955
[20]   Ike M, Nagamatsu K, Shioya A , et al. Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its ex-pression in Escherichia coli. Applied Microbiology Biotechnology, 2006,71(3):294-303.
doi: 10.1007/s00253-005-0171-y pmid: 16341861
[21]   Sorbotten A, Horn S J, Eijsink V G , et al. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS Journal, 2005,272(2):538-549.
doi: 10.1111/j.1742-4658.2004.04495.x
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[5] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[6] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[7] Min-hua XU,Jing-jing ZHANG,Xiao-bao JIN,Xia-bo LI,Yan WANG,Yan MA. Cloning\Expression and Bioactivity of the Chitinase Gene ChiA from the Endophytes of Periplaneta americana[J]. China Biotechnology, 2019, 39(1): 31-37.
[8] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[9] Juan-juan QU,Xiao-bei ZHAN,Hong-tao ZHANG,Xian-chao ZHOU,Yu-chen JIA,Xue-ying CAO. Identification of Cyclic β-1,2-glucan Produced under pH Control[J]. China Biotechnology, 2018, 38(6): 43-51.
[10] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[11] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[12] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[13] YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris[J]. China Biotechnology, 2017, 37(10): 1-7.
[14] ZHANG Rui-xiang, YANG Zhong . Screening, Identification and Enzymatic Properties Studies of Chitinase from Submarine Sediments[J]. China Biotechnology, 2015, 35(8): 76-82.
[15] ZHANG Jun-xia, CONG Da-peng, LI Ya-hua, XIAN Hong-quan. Prokaryotic Expression of tachi2 Gene from Trichoderma asperellum and Characterization of Recombinant Enzyme[J]. China Biotechnology, 2013, 33(6): 45-51.