Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (6): 93-97    DOI:
REVIEWS     
Current Development on RNA-based Anti-HIV-1 Gene Therapy
CHEN Feng, YANG Yi-shu, ZENG Yi
College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China
Download: HTML   PDF(421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Acquired immune deficiency syndrome (AIDS) is a high-risk disease which spreads rapidly all over the world since it has been discovered. Although the highly active antiretroviral therapy (HAART) that are widely used in present can improve the quality of life of HIV-1 infected patient dramatically, treatment interruptions have often occurred because of the high cost, drug resistance and side effects. As a result, the new antiretroviral drugs and approaches are demanded for sustained antiretrovial effects. With the development of molecular biology, stem cell, nanotechnology and other related technology, gene therapy for HIV-1 infection has attracted considerable attention in recent years. RNA-based gene therapy for treatment of HIV-1 infection, including antisense RNA, ribozymes, RNA decoys and the RNA interference are focused on. These studies demonstrated that the RNA-based anti-HIV-1 gene therapy may serve as an effective adjuvant to traditional treatments.

Key wordsGene therapy      Human Immunodeficiency Virus Type-1 (HIV-1)      RNA     
Received: 10 January 2012      Published: 25 June 2012
ZTFLH:  Q819  
Cite this article:

CHEN Feng, YANG Yi-shu, ZENG Yi. Current Development on RNA-based Anti-HIV-1 Gene Therapy. China Biotechnology, 2012, 32(6): 93-97.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I6/93

[1] Gebo K A, Fleishman J A, Conviser R, et al. Contemporary costs of HIV healthcare in the HAART era. AIDS, 2010, 24: 2705-2715.
[2] Richman D D, Margolis D M, Delaney M, et al. The challenge of finding a cure for HIV infection. Science, 2009, 323: 1304-1307.
[3] Rubanyi G M. The future of human gene therapy. Molecular Aspects of Medicine. 2001, 22: 113-142.
[4] Weiss B, Davidkova G, Zhou L W. Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci, 1999, 55: 334-358.
[5] Chan J, Lim S. Antisense oligonucleotides: from to therapeutic application. Clin Exp Pharmacol Physiol, 2006, 33 (5/6): 533-540.
[6] Inouye M. Antisense RNA: its functions and applications in gene regulation-a review. Gene, 1988, 72: 25-34.
[7] Ludwig L B, Ambrus J L, Krawczyk K A, et al. Human immunodeficiency virus-type I LTR DNA contains an intrinsic gene producing antisense RNA and protein products. Retrovirology, 2006, 3: 80-83.
[8] Qureshi A, Zheng R, Parlett T, et al. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA. Biochem J, 2006, 394(Pt 2): 511-518.
[9] Probst J C. Antisense oligodeoxynucleotide and ribozyme design. Methods, 2000, 22(3): 271-281.
[10] Peracchi A. Prospects for antiviral ribozymes and deoxyribozymes. Rev Med Virol, 2004, 14: 47-64.
[11] Mulhbacher J, St-PierreP, Lafontaine D A. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol, 2010, 10: 551-556.
[12] Scarborough J, Lévesque D, Didierlaurent L, et al. In Vitro and in vivo cleavage of HIV-1 RNA by new SOFA-HDV ribozymes and their potential to inhibit viral replication. RNA Biology, 2011, 8(2):343-353.
[13] Mitsuyasu R T, Merigan T C, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med, 2009, 15: 285-292.
[14] Unwalla H J, Li H T, Li S Y, et al. Use of a U16 snoRNA-containing ribozyme library to identify ribozyme targets in HIV-1. Mol Ther, 2008, 16(6): 1113-1119.
[15] Nazari R, Ma X Z, Joshi S. Inhibition of human immunodeficiency virus-1 entry using vectors expressing a multimeric hammerhead ribozyme targeting the CCR5 mRNA. J Gen Virol, 2008, 89: 2252-2261.
[16] 徐亮, 何军林, 刘克良. 核酶的研究进展. 中国新药杂志. 2006, 15(10): 759-764. Xu L, He J L, Liu K L. Progresses on ribozymes and deoxyribozymes. Chinese Journal of New Drugs, 2006, 15(10): 759-764.
[17] 张丽娜, 姜凤超. 核酶与AIDS治疗. 中国生物化学与分子生物学报. 2007, 23(2): 106-115. Zhang L N, Jiang F C. Ribozymes in AIDS therapy. Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(2): 106-115.
[18] Strayer D S, Akkina R, Bunnell B A. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther, 2005, 11(6): 823-842.
[19] Cullen B. Mechanism of action of regulatoty proteins encoded by complex retroviruses. Microbiol Rev, 1992, 56: 375-394.
[20] Sullenger B, Gallardo H, Ungers G, et al. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell, 1990, 63: 601-608.
[21] Tiley L, Malim M, Tewary H, et al. Identification of a high affinity RNA binding site for the HIV-1 Rev protein. Proc Natl Acad Sci USA, 1992, 89: 758-762.
[22] Lee S, Gallardo H, Gilboa E, et al. Inhibition of HIV-1 in human T-cells by a potent RRE decoy comprised of the 13nt nucleotide long minimal Rev binding domain. J Virol, 1994, 68: 8254-8264.
[23] Li M J, Li H T, Rossi J J. RNAi in Combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapty. Ann N Y Acad Sci, 2006, 1082(1): 172-179.
[24] Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136: 642-655.
[25] Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811.
[26] Tuschl T, Zamore P D, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Gene Dev, 1999, 13: 3191-3197.
[27] Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe. Nat Rev Genet, 2009, 10: 94-108.
[28] Ryther R C C, Flynt A S, Phillips III J A, et al. SiRNA therapeutics: big potential from small RNAs. Gene Ther, 2005, 12: 5-11.
[29] Liu Y P, Haasnoot J, Brake O, et al. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res, 2008, 36(9): 2811-2824.
[30] Ehsani A, Saetrom P, Zhang J, et al. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5. Mol Ther, 2010, 18(4): 796-802.
[31] Bertrand J R, Pottier M, Vekris A. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun, 2002, 296: 1000-1004.
[32] Jackson A I, Linsley P S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov, 2010, 9: 57-67.
[33] Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine, 2009, 5: 8-20.
[34] Eguchi A, Meade B R, Chang Y C, et al. Efficient siRNA delivery into primary cells by a peptide. Nat Biotechnol, 2009,27(6):567-571.
[35] Christie R J,Nishiyama N,Kataoka K. Delivering the code: polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies.Eninology,2010,151: 466-473.
[36] Neves J D, Amiji M M, Bahia M F, et al. Nanotechnology-based systems for the treatment and onprevention of HIV/AIDS. Adv Drug Deliver Rev, 2010, 62: 458-477.
[37] Shu Y, Cinier M, Shu D, et al. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods, 2011, 54: 204-214.
[38] Zhou J H, Shu Y, Guo P X, et al. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods, 2011, 54: 284-294.
[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[3] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[4] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[5] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[6] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[7] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[8] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[9] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[10] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[11] YANG Ruo-nan,XU Li,XU Ping,SU Yan. The Development Situation and Suggestions of RNA Therapy Industry[J]. China Biotechnology, 2021, 41(2/3): 162-171.
[12] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[13] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[14] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[15] YIN Zheng-qing,BAI Jing-yu,LIN Xiao-feng. Competitiveness Analysis and Enlightenment of Biomedical Industry in USA[J]. China Biotechnology, 2020, 40(9): 87-94.