Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 79-85    DOI:
    
Express and Regulation of Animal Anti-hypoxia Stress-related Genes
FANG Song-gang1, LIU Di-qiu1, LI Zhong2, ZOU Gui-wei2, WANG Guang-yong1, TIAN Rong-huan1
1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650224, China;
2. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434001, China
Download: HTML   PDF(466KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Maintenance of oxygen homeostasis is important to cellular and systemic function. Under hypoxia condition, a powerful defense of organism is triggered by the hypoxia signal to protect tissue and organs. In the process of defense, some genes are up-regulated, such as hypoxia inducible factor-1 (HIF-1)、vascular endothelial growth factor (VEGF)、erythropoietin (EPO) and nuclear factor-κB (NF-κB). HIF-1 is a anti-hypoxia stress-related genes and encodes a transcription factor, The regulation of HIF-1 activity is related to the oxygen concentration. VEGF is a target gene of HIF-1, which is one of the most critical antigenic factor identified to date. EPO can promote the differentiation and proliferation of red blood cells under hypoxia conditions. NF-κB can inhibit cell apoptosis which is induced by hypoxia. Obviously, these genes play important roles in protecting organism from hypoxia stress. The function, expression pattern and regulation mechanism of HIF-1, VEGF, NF-κB and EPO in hypoxia are summarized.



Key wordsHypoxia      HIF-1      VEGF      NF-κB      EPO     
Received: 01 June 2010      Published: 25 October 2010
ZTFLH:  Q74  
Corresponding Authors: LIU Di-qiu     E-mail: diqiuliu@gmail.com
Cite this article:

FANG Song-gang, LIU Di-qiu, LI Zhong, ZOU Gui-wei, WANG Guang-yong, TIAN Rong-huan. Express and Regulation of Animal Anti-hypoxia Stress-related Genes. China Biotechnology, 2010, 30(10): 79-85.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/79


[1] 杨曦明, 谢印芝, 尹昭云. 低氧感受及其信号转导机制研究进展. 生理科学进展, 2000, 31(4): 349-352. Yang X M, Xie Y Z, Yin Z Y. Progress in Physiological Sciences, 2000, 31(4): 349-352.

[2] Semenza G L. Perspectives on oxygen sensing. Cell, 1999, 98(3): 281-284.

[3] 曲伟栋, 赵华强. 低氧条件下HIF-1促进血管生成的研究进展.口腔医学研究, 2009, 25(2): 234-236. Qu W D, Zhao H Q. Journal of Oral Science Research, 2009, 25(2): 234-236.

[4] 陆蕴松, 高忠礼, 刘光耀. 低氧诱导因子-1对血管内皮生长因子的调控.中国老年学杂志,2009, 29(7): 905-907. Lu Y S, Gao Z L, Liu G Y. Chinese Journal of Gerontology, 2009, 29(7): 905-907.

[5] Depping R, Steinhoff A, Schindler S G, et al. Nuclear translocation of hypoxia-inducible factors (HIFs): Involvement of the classical importin α/β pathway. Biochimica et Biophysica Acta. 2007, 11(4): 394-404.

[6] 陆蕴松. 重组低氧诱导因子-α对成骨细胞功能调控的实验研究. 吉林大学博士学位论文, 2009. Lu Y S. Experimental study on regulatory effect of recombinant hypoxia inducible factor-1α on function of osteoblast. JiLin University, 2009.

[7] Semenza G L. HIF-1 and mechanisms of hypoxia sensing. cell regulation, 2001, 13(2): 167-171.

[8] Bell E L, Emerling B M, Chandel N S. Mitochondrial regulation of oxygen sensing. Mitochondrion, 2005, 6(5): 322-332.

[9] Liu Y V, Back J H, Zhang H, et al. RACK1 competes with HSP90 for binding to HIF-1 alpha and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1 alpha. Molecular Cell, 2007, 25(2): 207-217.

[10] 连泽勤, 赵大龙, 朱海波. 羟基红花黄色素A上调低氧状态下血管内皮细胞中缺氧诱导因子-1α的表达.药学学报, 2008, 43(5): 484-489. Lian Z Q, Zhao D L, Zhu H B. Acta Pharmaceutica, 2008, 43(5): 484-489.

[11] Senger D R, Galli S J, Dvorak A M, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid, Science, 1983, 219(4587): 983-985.

[12] Ferrara N, Henzel W J. Pituitary follicular cells secrete a novel heparin——binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 1989, 161(2): 851-858.

[13] 张莉, 徐辉. 血管内皮因子在口腔医学领域的研究进展. 北京口腔医学, 2009, 17(6): 347-349. Zhang L, Xu H. Beijing Journal of Stomatology, 2009, 17(6): 347-349.

[14] 王争. VEGF及其受体基因表达的调控机制.国外医学免疫学分册, 2002, 25(3): 129-133. Wang Z. Foreign Medical Sciences: Immunology, 2002, 25(3): 129-133.

[15] 杨 军, 陈明清, 董 坚. VEGF/VEGFR2信号转导通路在抗肿瘤血管生成中的作用. 世界华人消化杂志, 2007, 15(34): 3611-3616. Yang J, Chen M Q, Dong J. World Chinese Journal of Digestology, 2007, 15(34): 3611-3616.

[16] Ng Y S, Krilleke D, Shima D T. VEGF function in vascular pathogenesis. Experimental Cell Research. 2006, 312(5): 527-537.

[17] Klemcke H G, Vallet J L, Christenson R K, et al. Erythropoietin mRNA expression in pig embryos. Animal Reproduction Science, 2001, 66(2): 93-108.

[18] 杜晓英. 促红细胞生成素与肾缺血再灌注损伤. 国外医学移植与血液净化分册. 2005, 3(4): 8-11. Du X Y. Foreign Medical Sciences. 2005, 3(4): 8-11.

[19] Bernaudin M, Marti H H, Roussel S. Apotential role for erythropoietin in focal permanent cerebral ischemia in mice. Journal of Cerebral Blood Flow & Metabolism, 1999, 19(6): 643-651.

[20] 杜宝中. 红细胞生成素简介. 西藏大学学报, 2002, 17(3): 31-34. Du B Z. Erythropoietin Overview. Journal of Tibet University, 2002, 17(3): 31-34.

[21] Yoshimura A. The EPO-receptor and signal transduction. Oncologist, 1996, 1(5): 337-339.

[22] 樊华, 翟明. 红细胞生成素受体和信号传递. 日本医学介绍, 2000, 21(3): 137-138. Fan H, Zhai M. Progress in Japanese Medicine, 2000, 21(3): 137-138.

[23] Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer binding protein NF-κB by posttranslational mechanism. Cell, 1986, 47(6): 921-928.

[24] 李立人, 姚登福, 顾青青, 等. 肝癌发生过程中核因子-κB和Bcl-2动态表达及意义. 中国临床医学, 2009, 16(1): 67-69. Li L R, Yao D F, Gu Q Q, et al. Clinical Medical Journal of China, 2009, 16(1): 67-69.

[25] 于涛, 杨冬梅, 陶恒沂. 活性氧对核因子-κB和低氧诱导因子-1的调控. 中国职业医学, 2004, 31(4): 60-62. Yu T, Yang D M, Tao H Y. China Occupational Medicine, 2004, 31(4): 60-62.

[26] 韩志海, 虞积耀. 核因子-κB在严重创伤中的作用. 海军医学杂志, 2009, 30(3): 268-271. Han Z H, Yu J Y. Journal of Navy Medicine, 2009, 30(3): 268-271.

[27] 顾孝连, 徐兆礼. 河口及近岸海域低氧环境对水生动物的影响, 海洋渔业, 2009, 31(4): 426-437. Gu X L, Xu Z L. Marine Fisheries, 2009, 31(4): 426-437.

[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[3] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[4] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[5] QIN Meng-fei, SUN Hong, SONG Hao. Studies on the 3-Ketosteriod-1-Dehydrogenation of Steroid Hormone by Cellular lysates of Mycobacterium[J]. China Biotechnology, 2017, 37(8): 23-30.
[6] CUI Qing-yu, WANG Ming-yu, XU Hai. Research Progress of Bacterial Lux Bioluminescence Reporter System[J]. China Biotechnology, 2017, 37(8): 66-71.
[7] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[8] CAO Rong-yue, YU Min-xia, ZHANG Xin-li, LI Man-man, MIAO Zi-tao, JIN Liang. Construction,Expression,Purification of VEGFⅡ/GRP Fusion Protein and the Effects on RM-1 Prostate Tumor in Mice[J]. China Biotechnology, 2016, 36(8): 9-15.
[9] YE Hui-hua, HU Die, LI Chuang, CHENG Jian-qing, DENG Chao, WU Min-chen. Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance[J]. China Biotechnology, 2016, 36(10): 21-27.
[10] WANG Zhi-long, WANG Ying-ming, LIU Zheng-zhao, LU Da-ru, ZHU Hua-xing. The Secretory Expression of an Anti-VEGF Antibody Fab Fragment in E.coli[J]. China Biotechnology, 2014, 34(7): 30-37.
[11] ZHANG Si-min, GAO Yue, FANG Yu-dan, ZHANG Jin-mai, ZHANG Jin-zhi. Construction of Mammary Gland-specific and Effective Expression Vector for Mammary Gland Bioreactor[J]. China Biotechnology, 2014, 34(7): 49-55.
[12] GONG Guo-li, LIU Li-li, WANG Na. The Sorangium Cellulosum Immobilized by Porous Ceramic Fermentation for Epothilone Preparation[J]. China Biotechnology, 2014, 34(3): 109-113.
[13] ZHOU Nian, HU Ning, GONG Xuan, WANG Chang-dong, LIAO Jun-yi, LIANG Xi, HUANG Wei. Construction and Identification of Recombinant Adenovirus Ad-HIF1α[J]. China Biotechnology, 2014, 34(3): 34-40.
[14] ZHANG Xu-qiang, JI Jing, WANG Gang, ZHONG Ying, DIAO Jin-jin, GUAN Chun-feng, WU Jiang, JIN Chao. Cloning and Analysis of a Novel Gene Codifying for Violaxanthin De-epoxidase from Lycium chinense[J]. China Biotechnology, 2014, 34(1): 21-27.
[15] WANG Zhi-ming, GAO Jian, LI Geng. The Status Quo and Development Trend of the Therapeutic Monoclonal Antibody Drugs[J]. China Biotechnology, 2013, 33(6): 117-124.