Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (04): 110-115    
综述     
生物转化—从全细胞催化到代谢工程
郭明,胡昌华**
西南大学药学院现代生物医药研究所 重庆 400716
Biotransformation—From Whole-cell Biocatalysis To Metabolic Engineering
GUO Ming,HU Chang-hua
Institute of Modern Biopharmaceuticals, School of Pharmaceutical Sciences,Southwest University,Chongqing 400716,China
 全文: PDF(404 KB)   HTML
摘要:

与传统的化学合成方法相比,利用生物的手段转化生产活性化合物及其衍生物无疑具有更大的吸引力。随着用于生物转化微生物种类的增多,生物转化的应用领域不断得到扩大。生物转化的发展经历了野生型全细胞催化,基因工程微生物全细胞反应,以及利用系统分析和代谢工程进行全局性调控等几个阶段。以下对这一发展趋势及相关研究的最新进展作一简要综述。

关键词: 生物转化全细胞催化基因工程代谢工程    
Abstract:

Biocatalysis was employed to do chemical transformations on non-natural man-made organic compounds. Biological methods offer a true practical advantage over chemical synthesis. With the development of microbial strain involved in bioconversion, enzymes and proteins are increasingly being used as biocatalysts in the generation of products that have until now been derived using traditional chemical processes. Such products range from pharmaceutical and agrochemical building blocks to fine and bulk chemicals and, more recently, components of biofuels. Recombinant microbial whole-cell biocatalysis is a valuable optimization and modification approach for producing enantiomerically pure interemediates. Metabolic engineering based on the systems-level analysis of cells and organisms is now offering a new powerful way of designing and developing strains to improve the performance in biocatalysis. Recent advances and development strategies of bioconversion were highlighted here.

Key words: Bioconversion    Whole-cell biocatalysis    Genetic engineering    Metabolic engineering
收稿日期: 2009-12-23 出版日期: 2010-04-29
基金资助:

重庆市科技攻关重点项目(CSTC2009AB1029)资助项目

通讯作者: 胡昌华     E-mail: chhhu@vip.sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭明
胡昌华

引用本文:

郭明 胡昌华. 生物转化—从全细胞催化到代谢工程[J]. 中国生物工程杂志, 2010, 30(04): 110-115.

Hu Chang-hua. Biotransformation—From Whole-cell Biocatalysis To Metabolic Engineering. China Biotechnology, 2010, 30(04): 110-115.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I04/110

[1] Schoemaker H E,Mink D,Wubbolts M G. Dispelling the myths  Biocatalysis in industrial synthesis. Science,2003,299(5613): 16941697. 
[2] Yu H M, Yin J. Construction and selection of the novel recombinant Escherichia coli strain for poly(betahydroxybutyrate) production. Journal of Bioscience and Bioengineering,2000,89(4): 307311. 
[3] De Carvalho C,Da Fonseca M. Biotransformation of terpenes. Biotechnology Advances,2006,24(2): 134142. 
[4] Dai J G,Qu R J,Zou J H,et al. Structural diversification of taxanes by wholecell biotransformation. Tetrahedron,2008,64(35): 81028116. 
[5] Peng Y L,Demain A L. Bioconversion of compactin to pravastatin by Actinomadura sp. ATCC 55678. Journal of Molecular Catalysis B: Enzymatic,2000,10(13): 151156. 
[6] Park J W,Lee J K,Kwon T J,et al. Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnology Letters,2003,25(21): 18271831. 
[7] Wang F Q,Li B,Wang W,et al. Biotransformation of diosgenin to nuatigenintype steroid by a newly isolated strain,Streptomyces virginiae IBL14. Applied Microbiology and Biotechnology,2007,77: 771777. 
[8] Ghosh S,Sachan A,Sen S K,et al. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. Journal of Industrial Microbiology & Biotechnology,2007,34(2): 131138. 
[9] Liu J H,Chen Y G,Yu B Y,et al. A novel ketone derivative of artemisinin biotransformed by Streptomyces griseus ATCC 13273. Bioorganic & Medicinal Chemistry Letters,2006,16(7): 19091912. 
[10] Faramarzi M A,Aghelnejad M,TabatabaeiYazdi M,et al. Metabolism of androst4en3,17dione by the filamentous fungus Neurospora crassa. Steroids, 2008,73: 1318. 
[11] Choudhary M I,Khan N T,Musharraf S G,et al. Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids,2007,72: 923929. 
[12] Dong J Y,Chen Y G,Song H C,et al. Hydroxylation of the triterpenoid nigranoic acid by the fungus Gliocladium roseum YMF1.00133. Chemistry & Biodiversity,2007,4(2): 112117. 
[13] Luetz S,Giver L,Lalonde J. Engineered enzymes for chemical production. Biotechnology and Bioengineering,2008,101(4):647653. 
[14] Pollard D J,Woodley J M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends in Biotechnology,2007,25(2):6673. 
[15] Xie X K,Tang Y.Efficient synthesis of simvastatin by use of wholecell biocatalysis.Applied and Environmental Microbiology,2007,73(7): 20542060. 
[16] Xie X K,Watanabe K,Wojcicki W A,et al. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chemistry and Biology, 2006,13: 11611169. 
[17] Xie X K,Wong W W,Tang Y.Improving simvastatin bioconversion in Escherichia coli by deletion of bioH. Metabolic Engineering,2007,9(4): 379386. 
[18] Gao X,Xie X K,Pashkov I,et al. Directed evolution and structural characterization of a simvastatin synthase. Chemistry and Biology,2009,16(10):10641074. 
[19] Fujii T,Narikawa T,Sumisa F,et al. Production of alpha,omegaalkanediols using Escherichia coli expressing a cytochrome p450 from Acinetobacter sp OC4. Bioscience Biotechnology and Biochemistry,2006,70(6): 13791385. 
[20] Shrestha P,Oh T J,Sohng J K. Designing a wholecell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnology Letters,2008,30(6): 11011106. 
[21] Kau P B,BringerMeyer S,Sahm H. Dmannitol formation from Dglucose in a wholecell biotransformation with recombinant Escherichia coli. Applied Microbiology and Biotechnology,2005,69(4): 397403. 
[22] Cirino P C,Chin J W,Ingram L O. Engineering Escherichia coli for xylitol production from glucosexylose mixtures. Biotechnology and Bioengineering, 2006,95(6):11671176. 
[23] Overhage J,Steinbuchel A,Priefert H. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Applied and Environmental Microbiology,2003, 69(11): 65696576. 
[24] Payne M S,Petrillo K L,Gavagan J E,et al. Highlevel production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris: Engineering a biocatalyst. Gene,1995,167(12): 215219. 
[25] Sauerzapfe B,Engels L,Elling L. Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzyme and Microbial Technology ,2008,43: 289–296. 
[26] Honda K,Tsuboi H,Minetoki T,et al. Expression of the Fusarium oxysporum lactonase gene in Aspergillus oryzae: molecular properties of the recombinant enzyme and its application. Applied Microbiology and Biotechnology, 2005,66(5): 520526. 
[27] Chun H K,Ohnishi Y,Shindo K,et al. Biotransformation of flavone and flavanone by Streptomyces lividans cells carrying shuffled biphenyl dioxygenase genes. Journal of Molecular Catalysis BEnzymatic,2003,21(3): 113121. 
[28] StutzmanEngwall K,Conlon S,Fedechko R,et al. Semisynthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metabolic Engineering,2005,7(1): 2737. 
[29] Jager S,Jekel PA,Janssen D B. Hybrid penicillin acylases with improved properties for synthesis of betalactam antibiotics. Enzyme and Microbial Technology,2007,40(5): 13351344. 
[30] Gillam E M J. Extending the capabilities of nature’s most versatile catalysts: Directed evolution of mammalian xenobioticmetabolizing P450s. Archives of Biochemistry and Biophysics,2007,464(2): 176186. 
[31] Tyo K E,Alper H S,Stephanopoulos G N. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 2007,25(3): 132137. 
[32] Kau PB,BringerMeyer S,Sahm H. Metabolic engineering of Escherichia coli:construction of an efficient biocatalyst for Dmannitol formation in a wholecell biotransformation. Applied Microbiology and Biotechnology,2004,64:333339. 
[33] Nguyen H T T,Nevoigt E. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metabolic Engineering,2009,11(6):335346. 
[34] Mojzita D,Wiebe M,Hilditch S,et al. Metabolic engineering of fungal strains for conversion of Dgalacturonate to mesogalactarate. Applied and Environmental Microbiology,2010,76(1):169175. 
[35] Stafford D E,Yanagimachi K S,Lessard PA,et al. Optimizing bioconversion pathways through systems analysis and metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(4): 18011806. 
[36] Chung K B S,Lee D Y. Fluxsum analysis: a metabolitecentric approach for understanding the metabolic network. BMC Systems Biology,2009,117(3):110. 
[37] Cakir T,Arga K Y,Altintas M M,et al. Flux analysis of recombinant Saccharomyces cerevisiae YPBG utilizing starch for optimal ethanol production. Process Biochemistry,2004,39(12): 20972108. 
[38] Atsumi S,Cann A F,Connor M R,et al. Metabolic engineering of Escherichia coli for 1butanol production. Metabolic Engineering,2008,10(6):305311. 
[39] Mukherji S,van Oudenaarden A. Synthetic biology: understanding biological design from synthetic circuits. Nature Reviews Genetics,2009,10(12):859871. 
[40] Puchalka J,Oberhardt M A,Godinho M,et al. Genomescale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. Plos Computational Biology, 2008,4(10):118.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[4] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[5] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[6] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[7] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[8] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[9] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[10] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[11] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[12] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[13] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[14] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[15] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.