Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (8): 52-62    DOI: 10.13523/j.cb.2302034
研究报告     
基于转录组学分析大肠杆菌中purR基因缺失对胞苷合成代谢的影响*
马聪1,2,张想军1,2,叶彤1,2,柳凤敏1,2,张皓杰1,2,刘慧燕1,2,**(),方海田1,2,**()
1 宁夏大学食品与葡萄酒学院 银川 750021
2 宁夏食品微生物应用技术与安全控制重点实验室 银川 750021
Transcriptomics-based Analysis of the Effect of purR Gene Deletion on Cytidine Anabolism in Escherichia coli
MA Cong1,2,ZHANG Xiang-jun1,2,YE Tong1,2,LIU Feng-min1,2,ZHANG Hao-jie1,2,LIU Hui-yan1,2,**(),FANG Hai-tian1,2,**()
1 School of Food and Wine, Ningxia University, Yinchuan 750021, China
2 Ningxia Key Laboratory of Food Microbiology Application Technology and Safety Control, Yinchuan 750021, China
 全文: PDF(1594 KB)   HTML
摘要:

胞苷可作为功能营养化学品与药物合成原料,具有重要的应用价值。大肠杆菌中由purR基因编码的DNA结合转录抑制因子对胞苷合成代谢有重要调控作用。采用CRISPR/Cas9技术敲除大肠杆菌purR基因,并通过转录组学分析突变菌株基因表达的差异。结果表明,从出发菌株E. coli NXBG-12基因组上成功敲除了purR基因,获得了突变菌株E. coli NXBG-17P。对突变菌株E. coli NXBG-17P与E. coli NXBG-12的转录组学结果进行对比分析,发现有534个差异基因,其中上调基因302个、下调基因232个;GO分析显示,差异表达基因(DEGs)主要富集于细胞膜、ATP结合、DNA结合和水解酶活性的代谢过程;KEGG分析表明,上调基因主要富集在果糖和甘露糖代谢、嘧啶代谢和磷酸转移酶系统,下调基因主要富集在氧化磷酸化、半乳糖代谢和肽聚糖的生物合成。同时,突变菌株E. coli NXBG-17P在37℃摇瓶发酵40 h,测定胞苷浓度为(3.21±0.01) g/L,是出发菌株E. coli NXBG-12的1.58倍。这表明突变菌株E. coli NXBG-17P胞苷产量升高,可能是purR基因缺失导致葡萄糖磷酸转移酶系统(PTS)转运和磷酸戊糖途径中关键基因表达上调,合成了大量胞苷所需能量NADPH和前体物质PRPP。

关键词: 大肠杆菌胞苷purR基因基因敲除转录组分析    
Abstract:

Cytidine is used as a raw material for drug synthesis from functional nutritional chemicals and has important application value. DNA-binding transcriptional repressors encoded by the purR gene in Escherichia coli are important regulators of cytidine anabolism. In this study, the E. coli purR gene was knocked down using CRISPR/Cas9 technology and the differences in gene expression of mutant strains were analyzed by transcriptomics. The results showed that the purR gene was successfully knocked out from the genome of the starting strain E. coli NXBG-12, and the mutant strain E. coli NXBG-17P was obtained. Comparative analysis of transcriptomic results from mutant strains E. coli NXBG-17P and E. coli NXBG-12 revealed 534 differential genes, including 302 up-regulated genes and 232 down-regulated genes. GO analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic processes of cytoplasmic membrane, ATP binding, DNA binding and hydrolase activity; KEGG analysis showed that up-regulated genes were mainly enriched in fructose and mannose metabolism, pyrimidine metabolism and phosphotransferase system, and down-regulated genes were mainly enriched in oxidative phosphorylation, galactose metabolism and peptidoglycan biosynthesis. Meanwhile, mutant strain E. coli NXBG-17P was fermented in a shake flask at 37℃ for 40 h. The cytidine concentration was determined to be (3.21±0.01) g/L, which was 1.58 times the level of the starting strain E. coli NXBG-12. It is well demonstrated that purR gene deletion enhances PTS (glucose phosphotransferase system) transport and pentose phosphate pathway, which can provide more NADPH and pyrimidine nucleoside precursors PRPP for cytidine synthesis pathway.

Key words: Escherichia coli    Cytidine    purR gene    Gene knockout    Transcriptome analysis
收稿日期: 2023-02-20 出版日期: 2023-09-05
ZTFLH:  Q815  
基金资助: 国家自然科学基金(31860020);宁夏食品微生物应用技术与安全控制重点实验室平台建设项目(2021JCTJ0030)
通讯作者: **电子信箱:liuhy@nxu.edu.cn; fanght@nxu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马聪
张想军
叶彤
柳凤敏
张皓杰
刘慧燕
方海田

引用本文:

马聪, 张想军, 叶彤, 柳凤敏, 张皓杰, 刘慧燕, 方海田. 基于转录组学分析大肠杆菌中purR基因缺失对胞苷合成代谢的影响*[J]. 中国生物工程杂志, 2023, 43(8): 52-62.

MA Cong, ZHANG Xiang-jun, YE Tong, LIU Feng-min, ZHANG Hao-jie, LIU Hui-yan, FANG Hai-tian. Transcriptomics-based Analysis of the Effect of purR Gene Deletion on Cytidine Anabolism in Escherichia coli. China Biotechnology, 2023, 43(8): 52-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302034        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I8/52

菌株/质粒 菌株/质粒特征 来源
E. coli NXBG-12 野生型 本实验室保藏
E. coli NXBG-17P 基因缺失型E. colipurR) 本研究构建
pCas zrepA101(Ts)kan Pcas-cas9 ParaB-Red lacIqPtrc-sgRNA-pMB1 [4]
pTargetF pMB1 aadA sgRNA [4]
pTargetF-purR pMB1 aadA sgRNA-purR 本研究构建
表1  本研究中使用的菌株和质粒
引物 引物序列(5'-3')
sg20-F-SpeI GTCCTAGGTATAATACTAGTAAGAAACGCGCAACGCCGTGGTTTTAGAGCTAGAAATAGC
sg20-R TTCAAAAAAAGCACCGACTCGG
purR-Up-F CCGAGTCGGTGCTTTTTTTGAACAGGAAGGAGATGCGAGGGAG
purR-Up-R AGCGGTCTGCGTTGGATTGATGT
purR-Down-F AAGATGTAGCGAAACGAGCAAACGATCGTCGTTAATCACCCGTTGC
purR-Down-R-PstI AACTGCAGGTTGCGTTGTTGCCAGTCACC
purR-F ATGGCAACAATAAAAGATGTAGCGA
purR-R TTAACGACGATAGTCGCGGAAC
表2  本实验所用引物
图1  CRISPR介导的purR敲除验证结果
图2  出发菌株和突变菌株生长曲线图
图3  出发菌株和突变菌株耗糖量
图4  出发菌株和突变菌株胞苷产量
样本名称 原始序列数/条 质控后序列数/条 Q20/% Q30/% 比对唯一位点序列数占百分比/%
E. coli NXBG-12_1 27 593 726 26 807 752 97.94 94.78 98.28
E. coli NXBG-12_2 27 157 966 26 473 876 97.99 94.84 98.42
E. coli NXBG-12_3 28 037 004 27 135 972 97.97 94.83 97.75
E. coli NXBG-17P_1 28 806 658 27 930 726 98.13 94.92 98.01
E. coli NXBG-17P_2 27 803 854 26 914 230 98.08 94.85 98.00
E. coli NXBG-17P_3 30 197 990 29 105 462 98.03 94.81 98.00
表3  测序数据质控对比结果
图5  样品相关性分析
图6  差异表达基因火山图
图7  差异表达基因的GO富集分析
KEGG功能注释分类 数量/个 比例/%
上调基因 下调基因 上调基因 下调基因
氨基酸代谢 22 6 12.9 4.7
其他次生代谢物的生物合成 1 2 0.6 1.6
碳水化合物代谢 26 13 15.2 10.2
能量代谢 6 14 3.5 11.0
聚糖生物合成和代谢 0 7 0.0 5.5
脂质代谢 8 3 4.7 2.4
辅因子和维生素代谢 11 5 6.4 3.9
其他氨基酸代谢 6 2 3.5 1.6
萜类化合物和聚酮化合物代谢 8 0 4.7 0.0
核苷酸代谢 6 5 3.5 3.9
异生物质的生物降解和代谢 7 5 4.1 3.9
表4  DEGs的KEGG通路富集分析
KEGG通路分类 数量/个 比例/%
上调基因 下调基因 上调基因 下调基因
00190 氧化磷酸化 0 10 0.0 6.3
00052 半乳糖代谢 2 7 0.9 4.4
00240 嘧啶代谢 4 4 1.8 2.5
00550 肽聚糖的生物合成 0 6 0.0 3.8
00010 糖酵解/葡萄糖生成 3 3 1.3 1.9
02060 磷酸转移酶系统(PTS) 4 2 1.8 1.3
00910 氮代谢 1 0 0.4 0.0
00051 果糖和甘露糖代谢 6 0 2.7 0.0
00620 丙酮酸代谢 3 2 1.3 1.3
00410 β-丙氨酸代谢 4 1 1.8 0.6
00250 丙氨酸、天冬氨酸和谷氨酸代谢 0 3 0.0 1.9
00030 PPP途径 0 1 0.0 0.6
00020 TCA循环 1 0 0.4 0.0
表5  DEGs的KEGG通路功能挖掘
图8  胞苷合成相关通路相关基因表达示意图
图9  DEGs qRT-PCR验证结果
[1] Deep A, Narasimhan B, Kumar S. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Current Bioactive Compounds, 2019, 15(3): 289-303.
doi: 10.2174/1573407214666180124160405
[2] 吴庆, 刘慧燕, 方海田, 等. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略. 中国生物工程杂志, 2015, 35(9): 122-127.
Wu Q, Liu H Y, Fang H T, et al. Metabolic control fermentation mechanism and breeding strategies of cytidine excessive biosynthesis in Bacillus amyloliquefaciens. China Biotechnology, 2015, 35(9): 122-127.
[3] 马若霜, 方海田, 刘慧燕, 等. 生物法合成胞苷的研究进展. 食品与发酵科技, 2019, 55(1):71-75, 78.
Ma R S, Fang H T, Liu H Y, et al. Research progress in the synthesis of cytidine by biological methods. Sichuan Food and Fermentation, 2019, 55(1):71-75, 78.
[4] 刘益宁, 秦臻, 李旋, 等. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响. 食品与发酵工业, 2021, 47(12):10-16.
Liu Y N, Qin Z, Li X, et al. Effect of cytidine synthesis pathway modification on the fermentation of pyrimidine nucleoside by Escherichia coli. Food and Fermentation Industries, 2021, 47(12):10-16.
[5] Yang D, Park S Y, Park Y S, et al. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 2020, 38(7): 745-765.
doi: 10.1016/j.tibtech.2019.11.007
[6] 赵贝贝, 方海田, 刘慧燕, 等. 解淀粉芽孢杆菌psd基因过表达对胞苷发酵的影响. 食品工业科技, 2019, 40(19):122-128.
Zhao B B, Fang H T, Liu H Y, et al. Effect of over-expression of psd gene on the production of cytidine in Bacillus amyloliquefaciens. Science and Technology of Food Industry, 2019, 40(19):122-128.
[7] Wu H Y, Li Y J, Ma Q, et al. Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering, 2018, 49: 248-256.
doi: 10.1016/j.ymben.2018.09.001
[8] Fan X G, Wu H Y, Li G L, et al. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS One, 2017, 12(5): e0176545.
[9] Ma R S, Fang H T, Liu H Y, et al. Overexpression of uracil permease and nucleoside transporter from Bacillus amyloliquefaciens improves cytidine production in Escherichia coli. Biotechnology Letters, 2021, 43(6): 1211-1219.
doi: 10.1007/s10529-021-03103-3
[10] Cho B K, Federowicz S A, Embree M, et al. The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Research, 2011, 39(15): 6456-6464.
doi: 10.1093/nar/gkr307
[11] Choi K Y, Zalkin H. Regulation of Escherichia coli pyrC by the purine regulon repressor protein. Journal of Bacteriology, 1990, 172(6): 3201-3207.
pmid: 1971620
[12] Wilson H R, Jr Turnbough C L. Role of the purine repressor in the regulation of pyrimidine gene expression in Escherichia coli K-12. Journal of Bacteriology, 1990, 172(6): 3208-3213.
pmid: 1971621
[13] Larsen J N, Jensen K F. Nucleotide sequence of the pyr D gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. European Journal of Biochemistry, 1985, 151(1): 59-65.
pmid: 2992959
[14] Devroede N, Thia-Toong T L, Gigot D, et al. Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled. Journal of Molecular Biology, 2004, 336(1): 25-42.
pmid: 14741201
[15] Piette J, Nyunoya H, Lusty C J, et al. DNA sequence of the carA gene and the control region of carAB:tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(13): 4134-4138.
[16] Meng L M, Kilstrup M, Nygaard P. Autoregulation of PurR repressor synthesis and involvement of purR in the regulation of pur B, purC, purL, purMN and guaBA expression in Escherichia coli. European Journal of Biochemistry, 1990, 187(2): 373-379.
pmid: 2404765
[17] Spoto M, Guan C H, Fleming E, et al. A universal, genomewide GuideFinder for CRISPR/Cas 9 targeting in microbial genomes. mSphere, 2020, 5(1): e00086-20.
[18] Xia J, Wang L, Zhu J B, et al. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/Cas9-coupled lambda Red recombineering. Biotechnology Letters, 2016, 38(1): 117-122.
doi: 10.1007/s10529-015-1956-4
[19] Hong K Q, Liu D Y, Chen T, et al. Recent advances in CRISPR/Cas 9 mediated genome editing in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2018, 34(10): 153.
doi: 10.1007/s11274-018-2537-1
[20] Khanzadi M N, Khan A A. CRISPR/Cas9: nature’s gift to prokaryotes and an auspicious tool in genome editing. Journal of Basic Microbiology, 2020, 60(2): 91-102.
doi: 10.1002/jobm.201900420 pmid: 31693214
[21] 陈若楠. 系统代谢工程改造大肠杆菌产丙酮酸的研究. 北京: 北京化工大学, 2018.
Chen R N. Study on the transformation of Escherichia coli to produce pyruvate by systematic metabolic engineering. Beijing: Beijing University of Chemical Technology.
[22] Deutscher J, Francke C, Postma P W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews: MMBR, 2006, 70(4): 939-1031.
doi: 10.1128/MMBR.00024-06
[23] 杜建涛, 魏伟, 徐庆阳, 等. 基于代谢流分析的L-组氨酸产生菌定向选育. 现代食品科技, 2010, 26(1): 5-8, 27.
Du J T, Wei W, Xu Q Y, et al. Application of metabolic flux analysis for screening of L-histidine-producing strains. Modern Food Science & Technology, 2010, 26(1): 5-8, 27.
[24] Bonekamp F, Clemmesen K, Karlström O, et al. Mechanism of UTP-modulated attenuation at the pyrE gene of Escherichia coli: an example of operon polarity control through the coupling of translation to transcription. The EMBO Journal, 1984, 3(12): 2857-2861.
doi: 10.1002/embj.1984.3.issue-12
[25] Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry, 2004, 279(8): 6613-6619.
doi: 10.1074/jbc.M311657200 pmid: 14660605
[26] Everaert C, Luypaert M, Maag J L V, et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Scientific Reports, 2017, 7(1): 1-11.
doi: 10.1038/s41598-016-0028-x
[1] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[2] 杨镒婴, 李晓乐, 李子龙, 李秋园, 陈伟, 尹守亮. 反选标记法在微生物基因敲除中的应用*[J]. 中国生物工程杂志, 2023, 43(4): 101-111.
[3] 卢南巡, 王荔巍, 刘玫秀, 张中华, 常景玲, 李志刚. 低聚磷酸盐促进cAMP发酵合成的全局转录组分析*[J]. 中国生物工程杂志, 2023, 43(4): 41-50.
[4] 卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.
[5] 董慧霞, 侯占铭. 尖孢镰刀菌亚麻专化型Folprp4基因参与调控菌丝生长和分生孢子发生[J]. 中国生物工程杂志, 2022, 42(3): 13-26.
[6] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[7] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[8] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[9] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[10] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[11] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[12] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[13] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[14] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[15] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.