Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 53-59    DOI: 10.13523/j.cb.2212011
技术与方法     
基于功能核酸的生物传感器对水体中Hg2+的高灵敏检测*
马莉萍,李云霞,聂莹莹,马生龙,郑礴**()
甘肃省科学院传感技术研究所 甘肃省传感器与传感技术重点实验室 兰州 730099
Oligonucleotide-based Biosenser for Highly Sensitive Detection of Hg2+ in Aqueous Solution
Li-ping MA,Yun-xia LI,Ying-ying NIE,Sheng-long MA,Bo ZHENG**()
Institute of Sensor Technology, Gansu Academy of Sciences, Key Laboratory of Sensor and Sensing Technology of Gansu, Lanzhou 730099, China
 全文: PDF(1707 KB)   HTML
摘要:

目的:汞是一种广泛存在于环境中的剧毒污染物,在较低浓度就能对人体造成严重危害;基于T-Hg2+-T碱基错配原理构建生物传感器,实现对水体中Hg2+浓度的高灵敏、高选择性检测。方法:筛选富含胸腺嘧啶的寡核苷酸(thymine rich oligonucleotide,TRO)作为Hg2+特异识别探针,以核酸荧光染料Gelred作为荧光指示探针,构建Gelred/TRO生物传感器检测水体中Hg2+,并分析多种因素对检测体系的影响。结果:优化检测条件下,Gelred/TRO传感器对Hg2+检测的线性范围为10~800 nmol/L,线性方程为y=0.005 96x+0.881 44(r2=0.991 47),检出限为0.14 nmol/L;10种干扰离子(Fe2+、Co2+、Cu2+、K+、Mg2+、Ca2+、Ag+、Cl- SO 4 2 - NO 3 -)的存在不影响对Hg2+的检测;在自来水样和黄河水样Hg2+加标检测实验中,平均回收率分别为98.08%和95.1%。结论:基于功能核酸的生物传感器操作简便、灵敏度高、特异性好、检测限低,在饮用水Hg2+含量的快速检测领域具有良好的应用前景。

关键词: 功能核酸Gelred生物传感器荧光检测Hg2+    
Abstract:

Objective: Mercury is a highly toxic and widespread pollutant in the environment, which can cause harm to human body even in low concentration. Based on the T-Hg2+-T base mismatch principle, a new biosensor was constructed to detect the concentration of Hg2+ in water with high sensitivity and selectivity. Methods: A new Gelred/TRO biosensor was constructed by using thymine rich oligonucleotide (TRO) as the specific Hg2+ recognition probe, and Gelred as the fluorescence indicator probe. The sensor is used to detect Hg2+ in water. The influence of many factors on the detection system was studied. Results: Under the optimized detection conditions, the linear range of Hg2+ detection was 10 ~ 800 nmol/L, which was fitted as follows: y=0.005 96x+0.881 44 (r2=0.991 47). The detection limit was 0.14 nmol/L. The presence of ten interfering ions such as Fe2+, Co2+, Cu2+, K+, Mg2+, Ca2+, Ag+, Cl-, SO 4 2 -, and NO 3 - did not affect the detection of Hg2+. The average recovery of Hg2+ in tap water samples and the Yellow River were 98.08% and 95.1%, respectively. Conclusion: This method has the advantages of simple operation, high sensitivity, good specificity and low detection limit. It has a good application prospect in the rapid determination of Hg2+ in drinking water.

Key words: Oligonucleotide    Gelred    Biosenser    Fluorescent    Hg2+
收稿日期: 2022-12-05 出版日期: 2023-08-03
ZTFLH:  O657.1  
基金资助: 兰州市城关区科技计划(2020-2-1-1);甘肃省科技计划(22JR5RA774);甘肃省科技计划(22CX8GA103);甘肃省科技计划(22JR11RA211)
通讯作者: **电子信箱:760403046@qq.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马莉萍
李云霞
聂莹莹
马生龙
郑礴

引用本文:

马莉萍, 李云霞, 聂莹莹, 马生龙, 郑礴. 基于功能核酸的生物传感器对水体中Hg2+的高灵敏检测*[J]. 中国生物工程杂志, 2023, 43(7): 53-59.

Li-ping MA, Yun-xia LI, Ying-ying NIE, Sheng-long MA, Bo ZHENG. Oligonucleotide-based Biosenser for Highly Sensitive Detection of Hg2+ in Aqueous Solution. China Biotechnology, 2023, 43(7): 53-59.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2212011        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/53

图1  Gelred/TRO传感器检测Hg2+的原理 Detection principle of Gelred/TRO composite probe for Hg2+
图2  荧光发射光谱表征
图3  TRO浓度与荧光强度变化
图4  pH值对传感器荧光信号的影响
图5  反应时间对传感器荧光信号的影响
图6  Gelred/TRO传感器检测不同浓度Hg2+的荧光光谱
图7  荧光强度变化与Hg2+浓度的线性关系
图8  Gelred/TRO传感器检测Hg2+的特异性
Hg2+加标量/
(nmol·L-1)
自来水 黄河水
测定值/(nmol·L-1) 回收率/% 测定值/(nmol·L-1) 回收率/%
600 576.65±0.54 96.08 556.34±0.21 92.72
700 670.68±0.09 95.81 658.23±0.01 94.03
800 818.89±0.35 102.35 788.51±0.57 98.56
表1  自来水及黄河水中不同浓度Hg2+的检测结果
[1] Sellaoui L, Soetaredjo F E, Ismadji S, et al. Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: experiments and application of two theoretical approaches. Journal of Molecular Liquids, 2018, 253: 160-168.
doi: 10.1016/j.molliq.2018.01.056
[2] Kokab T, Shah A, Iftikhar F J, et al. Amino acid-fabricated glassy carbon electrode for efficient simultaneous sensing of zinc(II), cadmium(II), copper(II), and mercury(II) ions. ACS Omega, 2019, 4(26): 22057-22068.
doi: 10.1021/acsomega.9b03189 pmid: 31891086
[3] Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Analytical Chemistry, 2008, 80(10): 3716-3721.
doi: 10.1021/ac800142k
[4] Zhang Y K, Yan T, Yan L G, et al. Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions. Journal of Molecular Liquids, 2014, 198: 381-387.
doi: 10.1016/j.molliq.2014.07.043
[5] Khani H, Abbasi S, Tavakkoli Yaraki M, et al. A naked-eye colorimetric assay for detection of Hg2+ ions in real water samples based on gold nanoparticles-catalyzed clock reaction. Journal of Molecular Liquids, 2022, 345: 118243.
doi: 10.1016/j.molliq.2021.118243
[6] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2006. 北京: 中国标准出版社 2007.
Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standards for drinking water quality: GB 5749-2006. Beijing: Standards Press of China, 2007.
[7] World Health Organization. Guidelines for drinking-water quality. Geneva: WHO, 2011.
[8] Salar Amoli H, Porgam A, Bashiri Sadr Z, et al. Analysis of metal ions in crude oil by reversed-phase high performance liquid chromatography using short column. Journal of Chromatography A, 2006, 1118(1): 82-84.
pmid: 16723133
[9] Bettmer J, Heilmann J, Kutscher D J, et al. Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples. Analytical and Bioanalytical Chemistry, 2012, 402(1): 269-275.
doi: 10.1007/s00216-011-5420-6 pmid: 21983977
[10] Cai W, Xie S B, Zhang J, et al. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNA zyme-assisted target recycling and hybridization chain reaction. Biosensors and Bioelectronics, 2017, 98(15): 466-472.
doi: 10.1016/j.bios.2017.07.025
[11] Ebrahimi M, Raoof J B, Ojani R. Sensitive electrochemical DNA-based biosensors for the determination of Ag+ and Hg2+ ions and their application in analysis of amalgam filling. Journal of the Iranian Chemical Society, 2018, 15(8): 1871-1880.
doi: 10.1007/s13738-018-1384-1
[12] Yu Y J, Yu C, Gao R F, et al. Dandelion-like CuO microspheres decorated with Au nanoparticle modified biosensor for Hg2+ detection using a T-Hg2+-T triggered hybridization chain reaction amplification strategy. Biosensors and Bioelectronics, 2019, 131(15): 207-213.
doi: 10.1016/j.bios.2019.01.063
[13] Miao P, Tang Y G, Wang L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Applied Materials & Interfaces, 2017, 9(4): 3940-3947.
[14] Torigoe H, Ono A, Kozasa T. HgII ion specifically binds with T: T mismatched base pair in duplex DNA. Chemistry - A European Journal, 2010, 16(44): 13218-13225.
doi: 10.1002/chem.201001171
[15] Sohrabi H, Khataee A, Ghasemzadeh S, et al. Layer double hydroxides (LDHs)- based electrochemical and optical sensing assessments for qua.pngication and ide.pngication of heavy metals in water and environment samples: a review of status and prospects. Trends in Environmental Analytical Chemistry, 2021, 31: e00139.
doi: 10.1016/j.teac.2021.e00139
[16] Huang Y Z, Li L, Zhang Y, et al. Auto-cleaning paper-based electrochemiluminescence biosensor coupled with binary catalysis of cubic Cu2O-Au and polyethyleneimine for qua.pngication of Ni2+ and Hg2+. Biosensors and Bioelectronics, 2019, 126: 339-345.
doi: 10.1016/j.bios.2018.11.008
[17] Xing Y P, Xue B Y, Qi P S, et al. A rapid and sensitive fluorescence biosensor for Hg2+ detection in environmental samples. Sensors and Actuators Reports, 2022, 4: 100101.
doi: 10.1016/j.snr.2022.100101
[18] Karthikeyan K, Sujatha L. Fluorometric sensor for mercury ion detection in a fluidic MEMS device. IEEE Sensors Journal, 2018, 18(13): 5225-5231.
doi: 10.1109/JSEN.2018.2840331
[19] Li Y, Liu N, Liu H, et al. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples. Scie.pngic Reports, 2017, 7: 45974.
[20] Qiu H Z, Wu N M, Zheng Y H, et al. A robust and versatile signal-on fluorescence sensing strategy based on SYBR green I dye and graphene oxide. International Journal of Nanomedicine, 2014, 10: 147-156.
[21] Yang F, Zhao M L, Zheng B Z, et al. Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. Journal of Materials Chemistry, 2012, 22(48): 25471-25479.
doi: 10.1039/c2jm35471c
[22] Wang R Y, Zhou X H, Shi H C, et al. T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+. Biosensors and Bioelectronics, 2016, 78: 418-422.
doi: 10.1016/j.bios.2015.11.082
[1] 姜嘉烨,吴娅芳,黄志强,王英林,于影,谷志涛,刘箐. 电化学生物传感器在乳腺癌肿瘤标志物检测中的研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 101-113.
[2] 王成,高倩,张凌恺,史建国,陈禹保. 基于专利分析的生物传感器发展态势研究*[J]. 中国生物工程杂志, 2022, 42(9): 124-132.
[3] 朱舒,朱利丰,杨朔,靳然,王玉生,孙宝全. 硅纳米线在生物传感器中的应用概述[J]. 中国生物工程杂志, 2022, 42(1/2): 174-181.
[4] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[5] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[6] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[7] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[8] 李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.
[9] 黄怡,李晓宇,田芳,钱小红,应万涛. 质谱方法实现抗体类药物糖链修饰的鉴定与定量研究[J]. 中国生物工程杂志, 2018, 38(1): 32-41.
[10] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[11] 温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.
[12] 闫兴, 师明磊, 陈娜, 王洋, 张彦, 王政, 李晓晨, 赵志虎. HCV NS3/4A蛋白酶胞内荧光检测方法的建立[J]. 中国生物工程杂志, 2012, 32(07): 84-88.
[13] 张艳梅, 曾虹燕, 蔡西玲, 熊龙斌, 张存滢, 侯茜. 汞离子对木瓜蛋白酶结构的影响及抑制机理的研究[J]. 中国生物工程杂志, 2012, 32(01): 87-91.
[14] 邓汉超, 尹长城, 刘国振, 林健荣, 邓平建. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(01): 86-95.
[15] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.