Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (7): 105-114    DOI: 10.13523/j.cb.20170717
技术与方法     
以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯
温国霞1,2, 黄子豪1,2, 谭俊杰3, 阚乃鹏4, 凌婧怡5, 张霞1,2, 刘刚2, 陈惠鹏2
1. 安徽大学健康科学研究院 合肥 230601;
2. 军事医学科学院 北京 100071;
3. 成都军区总医院 成都 610083;
4. 福建省疾病预防控制中心 福州 350001;
5. 南京军区福州总医院 福州 350001
Construction of XylR-Pugene Lines in Escherichia coli to Detect 2,4,6-trinitrotoluene
WEN Guo-xia1,2, HUANG Zi-hao1,2, TAN Jun-jie3, KAN Nai-peng4, LING Jing-yi5, ZHANG Xia1,2, LIU Gang2, CHEN Hui-peng2
1. Institute of Health Sciences, Anhui University, Hefei 230601, China;
2. Academy of Military Medical Sciences, Beijing 100071, China;
3. Chengdu Military General Hospital, Chengdu 610083, China;
4. Fujian CenterFor Disease Control & Prevention, Fuzhou 350001, China;
5. Fuzhou General Hospital of Nanjing Military Command, Fuzhou 350001, China
 全文: PDF(1721 KB)   HTML
摘要: 目的:恶臭假单胞菌中的TOL质粒上的XylR-Pu是经典的甲苯代谢通路,在甲苯类化合物存在时,调控蛋白XylR可以特异性的激活Pu启动子,进而启动相应甲苯代谢通路的表达。基于合成生物学的思想,优化设计此通路并导入遗传背景清楚、操作简单的大肠杆菌中构建全细胞生物传感器,用于检测环境污染物2,4,6-三硝基甲苯(TNT)。方法:以pETDuet-1为载体骨架,构建了XylR-Pu基因线路,并以绿色荧光蛋白GFP为报告分子,GFP的荧光值可以指征结合诱导剂后的XylR蛋白对Pu启动子的诱导强度,并在基因线路中加入四串联终止序列来降低背景值。最后对XylR蛋白的信号识别区进行连续易错PCR,构建随机突变体文库,从中筛选具有更高感应强度、更好灵敏度及特异性的调控蛋白。结果:四串联终止序列可有效降低XylR-Pu通路的背景值,随机突变体文库中筛选出的生物元件eX0-4,对TNT表现出良好的感应强度、灵敏度及特异性。结论: XylR蛋白在大肠杆菌中对硝基甲苯响应不明显,但筛选得到的突变蛋白eX0-4,为后续生物传感器的更深层次地开发提供了优良的元件储备。另外,利用易错PCR构建随机突变体文库从中筛选发挥预定功能的突变蛋白质也可成为挖掘生物元件的一种通用方法。
关键词: 合成生物学TOL质粒生物传感器基因线路6-三硝基甲苯24    
Abstract: Objective: The XylR-Pu is a classic toluene catabolic pathway, which is from TOL plasmid of Pseudomonas putida. In the presence of toluene, the XylR regulatory protein can activate Pu promoter and thus induce expression of corresponding metabolic genes. To detect 2,4,6-trinitrotoluene (TNT),the significant environmental pollutant, the pathway was optimized and put into Escherichia coli to construct whole-cell biosensor, which was based on the idea of synthetic biology. E.coliwas chosen as chassis cell due to its genetic background was clear and it was simple to operate. Methods: pETDuet-1 was used as backbone to construct gene circuit of XylR-Pu, XylR was inserted in first multi cloning site. The second T7 promoter was substituted by Pu promoter and reporter gene of green fluorescent protein was under the control of Pupromoter. The fluorescent values can indicate the strength of the activation of XylR protein to Pu promoter. Then four series terminator was inserted between XylR and Pu to minimize background expression. Finally, the receptor domain of XylR protein was randomly mutated using sequential error prone PCR to construct a mutant library and to identify XylR mutants, which can be more sensitive and specific to TNT. Results: The four series terminator can effectively prevent read-through and decrease background fluorescent. After selection, one mutant protein named eX0-4 displayed better induction intensity, sensitivity and specificity to TNT. Conclusions:As Nitrobenzene was not XylR natural inducer, so XylR showed no obvious response to TNT. But the method is feasible to modify the A domain of XylR protein to obtain non-natural but better protein components. The mutant of eX0-4 enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future. It can be a common method to identify biological elements to use error prone PCR to construct mutant library.
Key words: 2,4,6-trinitrotoluene    Biosensor    Synthetic biology    Gene line    TOL plasmid
收稿日期: 2017-01-23 出版日期: 2017-07-25
ZTFLH:  Q815  
基金资助: 国家"863"计划重点专项子课题资助项目(2016YFC1202403)
通讯作者: 刘刚     E-mail: jueliu@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄子豪
谭俊杰
张霞
刘刚
阚乃鹏
温国霞
凌婧怡
陈惠鹏

引用本文:

温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.

WEN Guo-xia, HUANG Zi-hao, TAN Jun-jie, KAN Nai-peng, LING Jing-yi, ZHANG Xia, LIU Gang, CHEN Hui-peng. Construction of XylR-Pugene Lines in Escherichia coli to Detect 2,4,6-trinitrotoluene. China Biotechnology, 2017, 37(7): 105-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170717        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I7/105

[1] Tan J, Kan N, Wang W, et al. Construction of 2,4,6-trinitrotoluene biosensors with novel sensing elements from Escherichia coli K-12 MG1655. Cell Biochemistry and Biophysics,2015, 72(2): 417-428.
[2] Habib M K. Controlled biological and biomimetic systems for landmine detection. Biosensors and Bioelectronics,2007, 23(1): 1-18.
[3] Ewing R G, Atkinson D A, Eiceman G A, et al. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta,2001, 54(3): 515-529.
[4] Armenta S, Alcala M,Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Analytica Chimica Acta,2011, 703(2): 114-123.
[5] Magrisso S, Erel Y, Belkin S.Microbial reporters of metal bioavailability. Micro Biotechnol,2008,1(4):320-330.
[6] Robin T, van der Meer J R. Bacterial biosensors for measuring availability of environmental pollutants. Sensors,2008,8(7):4062-4080.
[7] Turner A P F. Biosensors: sense and sensibility. Chemical Society Reviews,2013, 42(8): 3184-3196.
[8] Trang P T K, Berg M, Viet P H, et al. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environmental Science & Technology,2005, 39(19): 7625-7630.
[9] Kim M N, Park H H, Lim W K, et al. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. Journal of Microbiological Methods,2005, 60(2): 235-245.
[10] Pérez-Martín J,De Lorenzo V. Identification of the repressor subdomain within the signal reception module of the prokaryotic enhancer-binding protein XylR of Pseudomonas putida. Journal of Biological Chemistry,1996, 271(14): 7899-7902.
[11] Delgado A,Ramos J L. Genetic evidence for activation of the positive transcriptional regulator Xy1R, a member of the NtrC family of regulators, by effector binding. Journal of Biological Chemistry,1994, 269(11): 8059-8062.
[12] Natasha V, Ann E M, Anisa Y, et al. Structure, function, and tethering of DNA-binding domains in σ54 transcriptional activators. Biopolymers, 2013, 99(12):1082-1096.
[13] Galvāo T C, Mencía M,De Lorenzo V. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Molecular Microbiology,2007, 65(4): 907-919.
[14] Garmendia J, De Las Heras A, Galvāo T C, et al. Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microbial Biotechnology,2008, 1(3): 236-246.
[15] De Las Heras A,De Lorenzo V. Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Molecular Microbiology,2011, 79(5): 1248-1259.
[16] Yagur-Kroll S, Lalush C, Rosen R, et al. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Applied Microbiology and Biotechnology,2014, 98(2): 885-895.
[17] 谭俊杰. 基于合成生物学的地雷检测方法研究. 北京:中国人民解放军军事医学科学院,2015: 90-96. Tan J J,Research of Landmine Detection Methods Based on Synthetic Biology. Beijing: Academy of Military Medical Sciences,2015:90-96.
[18] Mcdaniel R,Weiss R. Advances in synthetic biology: on the path from prototypes to applications. Current Opinion in Biotechnology,2005, 16(4): 476-483.
[19] Matsumura I. Bacterial cells as model factories. American Journal of Operations Research,2013, 3(1): 81-86.
[20] Gibbs W W. Synthetic life. Scientific American,2004, 290(5): 74-81.
[21] Van Der Meer J R,Belkin S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Micro,2010, 8(7): 511-522.
[22] Marra A, Asundi J, Bartilson M, et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infection & Immunity, 2002, 70(3):1422.
[23] Endy D. Foundations for engineering biology. Nature,2005, 438(7067): 449-453.
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 朱嘉豪,陈婷,习欠云. miR-146a参与不同疾病的研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 64-70.
[4] 赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.
[5] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[6] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[7] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[8] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[9] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[10] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[11] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[12] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[13] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[14] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[15] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.