Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (5): 55-68    DOI: 10.13523/j.cb.2211043
综述     
mRNA疫苗及其基于聚合物的递送系统研究进展*
张亚茹1,王慧梅1,迟永杰2,高媛1,赵颖1,暴佳欣3,张竞2,王连艳2,**()
1 东北林业大学化学化工与资源利用学院 哈尔滨 150040
2 中国科学院过程工程研究所 生化工程国家重点实验室 北京 100190
3 黑龙江中医药大学药学院 哈尔滨 150040
Research Progress of mRNA Vaccines and Polymer-based Delivery Systems
ZHANG Ya-ru1,WANG Hui-mei1,CHI Yon-jie2,GAO Yuan1,ZHAO Ying1,BAO Jia-xin3,ZHANG Jin2,WANG Lian-yan2,**()
1 College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University,Haerbin 150040, China
2 State Key Laboratory, Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3 College of Pharmacy, Heilongjiang University of Chinese Medicine, Haerbin 150040, China
 全文: PDF(1735 KB)   HTML
摘要:

2019年,全球暴发了严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)疫情。由SARS-CoV-2引起的传染病(Corona Virus Disease 2019,COVID-19)具有极强的传染性及较高的病死率,对人类健康及经济发展造成了极大伤害。疫苗接种是预防和控制SARS-CoV-2传播的主要途径。信使RNA(mRNA)疫苗因具有制备简单、生产周期短、细胞毒性较小等优点而备受关注;最重要的是,mRNA容易实现量产,是应对突发疫情的重要手段之一。在此将对mRNA疫苗及其作用机制、递送载体以及给药方式等进行综述,旨在为mRNA疫苗研发工作提供参考。

关键词: mRNA疫苗作用机制递送系统给药方式COVID-19 mRNA疫苗    
Abstract:

There was a global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. The pandemic of corona virus disease 2019 (COVID-19) caused by SARS-CoV-2 shows high infectivity and fatality rate, which has caused a great burden on human health and economic development. Vaccination is an important way to prevent and control the prevalence and spread of SARS-CoV-2. A lot of vaccines are developed and applied to prevent and control it, such as inactivated viruses vaccines, recombinant subunit protein vaccines, adenovirus vector vaccines and messenger RNA (mRNA) vaccines. The mRNA is a new drug model, which can use the body’s own translation system to express proteins with different functions. Therefore, it can be used in the treatment of many diseases, which is also considered to be a substitute for DNA and recombinant protein mediated therapy. With mRNA synthesis, purification and modification in vitro, scientists find that the mRNA is easy to be degraded due to its instability, which leads to lower transfection efficiency. Therefore, it is necessary to fabricate and develop a suitable delivery system for improving its stability and translation efficiency. The successful delivery system makes mRNA drugs attract more and more attention in cancer treatment, infectious disease prevention, protein replacement therapy and gene editing. Until now, many delivery carriers have been designed and evaluated including dendrimers, liposome, nano-emulsions and polymer nanoparticles. In addition, mRNA vaccines show such excellent characteristics as simple preparation, short development and production cycle and little cytotoxicity. Most importantly, mRNA vaccines are easy to scale up. All these advantages result in mRNA vaccines’ suitablity to deal with infection outbreaks. Here we will review the mRNA vaccine, the mechanism of action, the delivery vector and the administration ways of the mRNA vaccine, in order to provide reference for the mRNA vaccine research and development.

Key words: mRNA vaccines    Action mechanism    Delivery system    Administration method    COVID-19 mRNA vaccine
收稿日期: 2022-11-22 出版日期: 2023-06-01
ZTFLH:  Q819  
基金资助: *国家自然科学基金面上项目(8197362);北京市自然科学基金-海淀原始创新联合基金重点研究项目(L202001);北京市自然科学基金-海淀原始创新联合基金前沿项目(L202039)
通讯作者: **电子信箱: wanglianyan@ipe.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张亚茹
王慧梅
迟永杰
高媛
赵颖
暴佳欣
张竞
王连艳

引用本文:

张亚茹, 王慧梅, 迟永杰, 高媛, 赵颖, 暴佳欣, 张竞, 王连艳. mRNA疫苗及其基于聚合物的递送系统研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 55-68.

ZHANG Ya-ru, WANG Hui-mei, CHI Yon-jie, GAO Yuan, ZHAO Ying, BAO Jia-xin, ZHANG Jin, WANG Lian-yan. Research Progress of mRNA Vaccines and Polymer-based Delivery Systems. China Biotechnology, 2023, 43(5): 55-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211043        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I5/55

图1  mRNA产品所处临床阶段分布
图2  mRNA疫苗作用机制图
图3  用于药物和疫苗递送的纳米载体
脂质纳米递送系统 聚合物纳米载体
组装方式 由阳离子脂质材料与mRNA通过静电作用形成复合物 以阳离子聚合物为载体,与mRNA通过静电作用自组装形成聚电解质络合物
优缺点 优点:脂质体是球形囊泡,可以封装mRNA并抵抗核酸酶;脂质体与细胞膜相似,易于与受体细胞融合,转染效率高。
缺点:脂质体不稳定、易水解,在递送过程中容易渗漏
优点:聚合物纳米载体比表面积大、药代动力学稳定;结构易于修饰(如增加亲水或疏水基团),降低分子本身毒性或增强与细胞膜的作用,从而提高转染效率
代表性材料 三甲基氯化铵(DOTAP)、1,2-双十八烯氧基-3-甲基铵丙烷(DOTMA)、SM-102(已用于抗SARS-CoV-2的Moderna疫苗mRNA-1273)、ALC-0315(已用于辉瑞疫苗BNT162b2)等 聚氨基胺(PAA)、聚赖氨酸(PLL)、聚酰胺-胺(PAMAM)树状物、聚氨基酯(PBAEs)、聚乙烯亚胺(PEI)、聚乳酸-羟基乙酸共聚物(PLGA)等
表1  脂质纳米递送系统和聚合物纳米载体的比较
图4  不同聚合物基纳米制剂的近似尺寸及其与生物分子或生物体尺寸的比较[39]
图5  树状大分子结构示意图
图6  聚合物胶束负载mRNA过程示意图
图7  负载mRNA聚合物纳米球和纳米囊的结构示意图
Pfizer-BioNTech 疫苗(BNT162b2) Moderna疫苗(mRNA-1273)
mRNA 编码SARS-CoV-2病毒刺突糖蛋白的modRNA
脂质纳米颗粒
合成编码SARS-CoV-2刺激性糖蛋白的mRNA
脂质纳米颗粒
递送系统
FDA授予EUA
剂量
注射次数
有效性
稳定性/储存

说明
2020年12月11日
0.3 mL,含30 μg疫苗
两剂,第一剂21~28天后注射第二剂
95%
-80~-60℃(6个月)
2~8℃(5天)
以冷冻悬浮液的形式提供
必须解冻,然后用1.8 mL无防腐剂无菌盐水溶液(0.9%,m/V)稀释
稀释后,疫苗需要储存在2~5℃,并在6 h内给药
2020年12月18日
0.5 mL,含100 μg疫苗
两剂,第一剂28天后注射第二剂
94.1%
-25~-15℃(6个月)
2~8℃(30天)
以冷冻悬浮液的形式提供
疫苗在给药前必须解冻

解冻后,疫苗需要储存在2~25℃,并在6 h内给药
表2  辉瑞-生物科技(BNT162b2)和Moderna (mRNA-1273)疫苗的主要特征
[1] Pippa N, Gazouli M, Pispas S. Recent advances and future perspectives in polymer-based nanovaccines. Vaccines, 2021, 9(6): 558.
doi: 10.3390/vaccines9060558
[2] Scheiblhofer S, Thalhamer J, Weiss R. DNA and mRNA vaccination against allergies. Pediat Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology, 2018, 29(7): 679-688.
[3] Schlake T, Thess A, Fotin-Mleczek M, et al. Developing mRNA-vaccine technologies. RNA Biology, 2012, 9(11): 1319-1330.
doi: 10.4161/rna.22269 pmid: 23064118
[4] Pardi N, Hogan M J, Porter F W, et al. mRNA vaccines:a new era in vaccinology. Nature Reviews Drug Discovery, 2018, 17(4): 261-279.
doi: 10.1038/nrd.2017.243
[5] Linares-Fernández S, Lacroix C, Exposito J Y, et al. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends in Molecular Medicine, 2020, 26(3): 311-323.
doi: S1471-4914(19)30244-8 pmid: 31699497
[6] Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics:developing a new class of drugs. Nature Reviews Drug Discovery, 2014, 13(10): 759-780.
doi: 10.1038/nrd4278 pmid: 25233993
[7] 王彧, 白岳丘, 田易晓, 等. mRNA疫苗在疾病预防与治疗中的研究进展与展望. 中国生物工程杂志, 2022, 42(10): 51-59.
Wang Y, Bai Y Q, Tian Y X, et al. Advances and prospects of mRNA vaccines used in the prevention and therapies of diseases. China Biotechnology, 2022, 42(10): 51-59.
[8] Richner J M, Himansu S, Dowd K A, et al. Modified mRNA vaccines protect against zika virus infection. Cell, 2017, 168(6): 1114-1125.e10.
doi: S0092-8674(17)30195-2 pmid: 28222903
[9] Chahal J S, Khan O F, Cooper C L, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(29): E4133-E4142.
[10] Kose N, Fox J M, Sapparapu G, et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Science Immunology, 2019, 4(35): eaaw6647.
[11] Alberer M, Gnad-Vogt U, Hong H S, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet, 2017, 390(10101): 1511-1520.
doi: 10.1016/S0140-6736(17)31665-3
[12] Chaudhary N, Weissman D, Whitehead K A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 2021, 20(11): 817-838.
doi: 10.1038/s41573-021-00283-5 pmid: 34433919
[13] Baeza Garcia A, Siu E, Sun T, et al. Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection. Nature Communications, 2018, 9(1): 1-13.
doi: 10.1038/s41467-017-02088-w
[14] Maruggi G, Chiarot E, Giovani C, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine, 2017, 35(2): 361-368.
doi: S0264-410X(16)31101-X pmid: 27939014
[15] Cordery D V, Kishore U, Kyes S, et al. Characterization of a Plasmodium falciparum macrophage-migration inhibitory factor homologue. The Journal of Infectious Diseases, 2007, 195(6): 905-912.
doi: 10.1086/522472
[16] Dobson S E, Augustijn K D, Brannigan J A, et al. The crystal structures of macrophage migration inhibitory factor from Plasmodium falciparum and Plasmodium berghei. Protein Science, 2009, 18(12): 2578-2591.
doi: 10.1002/pro.263 pmid: 19827093
[17] Conry R M, LoBuglio A F, Wright M, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Research, 1995, 55(7): 1397-1400.
pmid: 7882341
[18] Sebastian M, Papachristofilou A, Weiss C, et al. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 2014, 14(1): 1-10.
doi: 10.1186/1471-2407-14-1
[19] Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585(7823): 107-112.
doi: 10.1038/s41586-020-2537-9
[20] Cafri G, Gartner J J, Zaks T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of Clinical Investigation, 2020, 130(11): 5976-5988.
doi: 10.1172/JCI134915
[21] Burris Howard A, Patel Manish R, Cho Daniel C, et al. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. Journal of Clinical Oncology, 2019, 37(15_suppl): 2523.
doi: 10.1200/JCO.2019.37.15_suppl.2523
[22] Hou X C, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021, 6(12): 1078-1094.
doi: 10.1038/s41578-021-00358-0
[23] Schumacher T N, Schreiber R D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230): 69-74.
doi: 10.1126/science.aaa4971 pmid: 25838375
[24] Bauer T, Patel M, Jimeno A, et al. A Phase I, open-label, multicenter, dose escalation study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36, for intratumoral injection alone and in combination with immune checkpoint blockade. Cancer Research, 2019, 79(13) : CT210.
[25] Patel M, Bauer T, Jimeno A, et al. A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab. Journal of Clinical Oncology, 2020, 38(15_suppl): 3092.
doi: 10.1200/JCO.2020.38.15_suppl.3092
[26] Rurik J G, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375(6576): 91-96.
doi: 10.1126/science.abm0594 pmid: 34990237
[27] Kramps T, Elbers K. Introduction to RNA vaccines. Methods in Molecular Biology (Clifton, N J), 2017, 1499: 1-11.
[28] Yang J L, Zhu J F, Sun J J, et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Molecular Therapy-Nucleic Acids, 2022, 30: 184-197.
doi: 10.1016/j.omtn.2022.09.010
[29] Probst J, Weide B, Scheel B, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Therapy, 2007, 14(15): 1175-1180.
doi: 10.1038/sj.gt.3302964 pmid: 17476302
[30] Lindsay K E, Bhosle S M, Zurla C, et al. Visualization of early events in mRNA vaccine delivery in non-human Primates via PET-CT and near-infrared imaging. Nature Biomedical Engineering, 2019, 3(5): 371-380.
doi: 10.1038/s41551-019-0378-3 pmid: 30936432
[31] Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in Rhesus macaques. Molecular Therapy, 2017, 25(12): 2635-2647.
doi: 10.1016/j.ymthe.2017.08.006
[32] Zhang Z K, Ohto U, Shibata T, et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity, 2016, 45(4): 737-748.
doi: S1074-7613(16)30380-6 pmid: 27742543
[33] Tanji H, Ohto U, Shibata T, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nature Structural & Molecular Biology, 2015, 22(2): 109-115.
doi: 10.1038/nsmb.2943
[34] Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663): 1526-1529.
doi: 10.1126/science.1093620 pmid: 14976262
[35] Weide B, Carralot J P, Reese A, et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. Journal of Immunotherapy (Hagerstown, Md: 1997), 2008, 31(2): 180-188.
[36] Wang Z Q, Cui K, Costabel U, et al. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. Exploration, 2022, 2(5): 20210082.
[37] Wang G L, Uludag H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opinion on Drug Delivery, 2008, 5(5): 499-515.
doi: 10.1517/17425247.5.5.499 pmid: 18491978
[38] Locatelli E, Franchini M C. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. Journal of Nanoparticle Research, 2012, 14(12): 1316.
doi: 10.1007/s11051-012-1316-4
[39] Fornaguera C, Castells-Sala C, Borrós S. Unraveling polymeric nanoparticles cell uptake pathways: two decades working to understand nanoparticles journey to improve gene therapy. Advances in Experimental Medicine and Biology, 2020, 1288: 117-138.
doi: 10.1007/5584_2019_467 pmid: 31916235
[40] Tomalia D A. The dendritic state. Materials Today, 2005, 8(3): 34-46.
[41] Mbatha L S, Maiyo F, Daniels A, et al. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics, 2021, 13(6): 900.
doi: 10.3390/pharmaceutics13060900
[42] Abedi-Gaballu F, Dehghan G, Ghaffari M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today, 2018, 12: 177-190.
doi: 10.1016/j.apmt.2018.05.002 pmid: 30511014
[43] Zhang D P, Atochina-Vasserman E N, Maurya D S, et al. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer delivery systems for mRNA. Journal of the American Chemical Society, 2021, 143(31): 12315-12327.
doi: 10.1021/jacs.1c05813 pmid: 34324336
[44] Kowalski P S, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy, 2019, 27(4): 710-728.
doi: S1525-0016(19)30053-X pmid: 30846391
[45] Zhao J, Weng G J, Li J J, et al. Polyester-based nanoparticles for nucleic acid delivery. Materials Science & Engineering C, Materials for Biological Applications, 2018, 92: 983-994.
[46] Trivedi R, Kompella U B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (London, England), 2010, 5(3): 485-505.
doi: 10.2217/nnm.10.10
[47] Mandal A, Bisht R, Rupenthal I D, et al. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. Journal of Controlled Release, 2017, 248: 96-116.
doi: S0168-3659(17)30017-2 pmid: 28087407
[48] Gill K K, Kaddoumi A, Nazzal S. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. Journal of Drug Targeting, 2015, 23(3): 222-231.
doi: 10.3109/1061186X.2014.997735 pmid: 25547369
[49] Miyazaki T, Uchida S, Nagatoishi S, et al. Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening. Advanced Healthcare Materials, 2020, 9(16): 2000538.
[50] Jhaveri A M, Torchilin V P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Frontiers in Pharmacology, 2014, 5: 77.
doi: 10.3389/fphar.2014.00077 pmid: 24795633
[51] Li Y M, Wei S T, Sun Y H, et al. Nanomedicine-based combination of dexamethasone palmitate and MCL-1 siRNA for synergistic therapeutic efficacy against rheumatoid arthritis. Drug Delivery and Translational Research, 2021, 11(6): 2520-2529.
doi: 10.1007/s13346-021-01037-x pmid: 34331261
[52] O’Keeffe Ahern J, A S, Zhou D Z, et al. Brushlike cationic polymers with low charge density for gene delivery. Biomacromolecules, 2018, 19(5): 1410-1415.
doi: 10.1021/acs.biomac.7b01267 pmid: 29125281
[53] Ferrari R, Sponchioni M, Morbidelli M, et al. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale, 2018, 10(48): 22701-22719.
doi: 10.1039/c8nr05933k pmid: 30512025
[54] Qian C G, Chen Y L, Feng P J, et al. Conjugated polymer nanomaterials for theranostics. Acta Pharmacologica Sinica, 2017, 38(6): 764-781.
doi: 10.1038/aps.2017.42
[55] Tan L, Zheng T, Li M, et al. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Delivery and Translational Research, 2020, 10(3): 678-689.
doi: 10.1007/s13346-020-00725-4 pmid: 32048201
[56] Verma G, Rajagopalan M D, Valluru R, et al. Nanoparticles: A novel approach to target tumors. Nano-and Microscale Drug Delivery Systems. Amsterdam: Elsevier, 2017: 113-129.
[57] Sharifnia Z, Bandehpour M, Hamishehkar H, et al. In-vitro transcribed mRNA delivery using PLGA/PEI nanoparticles into human monocyte-derived dendritic cells. Iranian Journal of Pharmaceutical Research: IJPR, 2019, 18(4): 1659-1675.
[58] Khurana A, Allawadhi P, Khurana I, et al. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today, 2021, 38: 101142.
doi: 10.1016/j.nantod.2021.101142
[59] 苗佳颖, 陆伟. 应用于mRNA疫苗的非病毒载体递送系统研究进展. 药学进展, 2022, 46(2): 84-92.
Miao J Y, Lu W. Research progress of non-viral vector delivery system for mRNA vaccine. Progress in Pharmaceutical Sciences, 2022, 46(2): 84-92.
[60] Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 2015, 217: 345-351.
doi: 10.1016/j.jconrel.2015.08.007 pmid: 26264835
[61] Moyer T J, Zmolek A C, Irvine D J. Beyond antigens and adjuvants: formulating future vaccines. The Journal of Clinical Investigation, 2016, 126(3): 799-808.
doi: 10.1172/JCI81083
[62] Sebastian M, Schröder A, Scheel B, et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunology, Immunotherapy, 2019, 68(5): 799-812.
doi: 10.1007/s00262-019-02315-x
[63] Walsh E E, Frenck R W Jr, Falsey A R, et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. The New England Journal of Medicine, 2020, 383(25): 2439-2450.
doi: 10.1056/NEJMoa2027906 pmid: 33053279
[64] Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b 2 mRNA COVID-19 vaccine. The New England Journal of Medicine, 2020, 383(27): 2603-2615.
doi: 10.1056/NEJMoa2034577
[65] Anderson E J, Rouphael N G, Widge A T, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. The New England Journal of Medicine, 2020, 383(25): 2427-2438.
doi: 10.1056/NEJMoa2028436
[66] Wilson B, Geetha K M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. Journal of Drug Delivery Science and Technology, 2022, 74: 103553.
doi: 10.1016/j.jddst.2022.103553
[67] Tenchov R, Bird R, Curtze A E, et al. Lipid Nanoparticles:from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11): 16982-17015.
doi: 10.1021/acsnano.1c04996
[1] 马品品, 熊向源. 高分子纳米材料用于口服胰岛素递送体系*[J]. 中国生物工程杂志, 2023, 43(2/3): 43-53.
[2] 韩佳, 张博文, 毛开云. 新型药物递送系统研发格局分析*[J]. 中国生物工程杂志, 2023, 43(2/3): 1-14.
[3] 金喆彤,芮雪,姜侯喆,王晶晶,陈玉根. mRNA疫苗非病毒载体递送系统研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 58-66.
[4] 赵冰,麻淳博,孙冰冰,赵海洋. 智能胰岛素递送系统用于糖尿病治疗的研究进展[J]. 中国生物工程杂志, 2022, 42(5): 81-90.
[5] 王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.
[6] 朱嘉豪,陈婷,习欠云. miR-146a参与不同疾病的研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 64-70.
[7] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[8] 杨琳,傅哲彦,吕正兵,舒建洪. 免疫佐剂分类及作用机制[J]. 中国生物工程杂志, 2019, 39(5): 114-119.
[9] 胡瞬,易有金,胡涛,李福胜. mRNA疫苗的开发及临床研究进展[J]. 中国生物工程杂志, 2019, 39(11): 105-112.
[10] 张杨玲,汪园,张革. 埃博拉病毒疫苗rVSV-ZEBOV的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 51-56.
[11] 许妍, 赵雪, 堵晶晶, 杨琼, 杨大洪, 蒲红州, 张顺华, 朱砺. 环状RNA研究进展[J]. 中国生物工程杂志, 2017, 37(10): 93-102.
[12] 李波,张耀洲. 抗菌肽Cecropin及其在转基因植物抗菌中的应用[J]. 中国生物工程杂志, 2008, 28(5): 122-127.
[13] 包福祥,何金生,曹贵方,王鑫,张莹,洪涛. 老年性痴呆抗体药物研究进展[J]. 中国生物工程杂志, 2008, 28(12): 107-111.
[14] 张山, 李平, 刘德立. 细胞色素P450酶系与除草剂代谢[J]. 中国生物工程杂志, 2004, 24(10): 18-21.
[15] 冯兴军, 王建华, 杨雅麟, 滕达, 刘立恒. 乳铁蛋白肽(Lactoferricin)作用机制研究进展[J]. 中国生物工程杂志, 2004, 24(1): 23-26.