Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 70-79    DOI: 10.13523/j.cb.2203059
综述     
骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*
毕煦昆1,郭成龙2,**(),赵建栋1,任行全1,柴威涛1
1.甘肃中医药大学 兰州 730000
2.甘肃中医药大学附属医院 兰州 730000
Research Progress of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells and Their Related Signal Pathways in Steroid-induced Necrosis of the Femoral Head
Xu-kun BI1,Cheng-long GUO2,**(),Jian-dong ZHAO1,Xing-quan REN1,Wei-tao CHAI1
1. Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
2. Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
 全文: PDF(1412 KB)   HTML
摘要:

骨髓间充质干细胞是具有多向分化能力的一种干细胞,近年来有关研究发现骨髓间充质干细胞分泌的外泌体具有促进损伤肌腱修复、血管生成、抑制氧化应激反应、保护神经细胞、促进软骨再生、调节骨代谢等功能。而激素性股骨头坏死是由于大量使用激素导致的股骨头无菌性坏死,其具体作用机制尚未阐明,相关信号通路,如Wnt/β-catenin、RANKL-RANK、PTEN/AKT、PI3K/AKT等通路在其中起着关键的作用,而这些信号通路的激活又与外泌体密切相关,综述了骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的有关研究进展,以期对激素性股骨头坏死的防治及相关药物研发有一定指导意义。

关键词: 外泌体信号通路骨修复激素性股骨头坏死    
Abstract:

Bone marrow mesenchymal stem cells are a kind of stem cells with multi-directional differentiation ability. In recent years, relevant studies have found that the exosomes secreted by bone marrow mesenchymal stem cells promote the repair of injured tendons and angiogenesis, inhibit oxidative stress response, protect neurons, promote cartilage regeneration, and regulate bone metabolism in addition to its other functions. Steroid-induced femoral head necrosis is a kind of aseptic necrosis of the femoral head caused by massive use of hormones. Its specific mechanism has not been clarified, and related signal pathways play a key role, such as Wnt/ β- catenin, RANKL-RANK, PTEN/AKT, PI3K/AKT and other pathways, and the activation of these signal pathways is closely related to exosomes. This article reviews the relevant research progress of exosomes from bone marrow mesenchymal stem cells and related signal pathways in steroid-induced femoral head necrosis, in order to have certain guiding significance for the prevention and treatment of steroid-induced femoral head necrosis and the development of related drugs.

Key words: Exosomes    Signaling pathway    Bone repair    Steroid-induced necrosis of the femoral head
收稿日期: 2022-03-26 出版日期: 2022-11-04
ZTFLH:  Q819  
基金资助: * 甘肃省自然科学基金(18JR3RA074);兰州市2019年科技计划项目(2019-1-64)
通讯作者: 郭成龙     E-mail: 107228466@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毕煦昆
郭成龙
赵建栋
任行全
柴威涛

引用本文:

毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.

Xu-kun BI,Cheng-long GUO,Jian-dong ZHAO,Xing-quan REN,Wei-tao CHAI. Research Progress of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells and Their Related Signal Pathways in Steroid-induced Necrosis of the Femoral Head. China Biotechnology, 2022, 42(10): 70-79.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203059        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/70

图1  外泌体的形成过程
图2  外泌体的结构
来源于BMSCs-Exos不同的mRNA 对应的信号通路 作用机制
miR-135b
miR-144
miR -545-3p
Wnt/β-catenin 加快 DNA 损伤修复 [37]
[40]
miR-218a MAPK 促进血管再生及免疫调节 [38]
miR-27a-3p ATF3 促进 MSCs 成骨分化,抑制成脂分化 [41]
MiR-let-7a HMGA2 抑制炎症反应 [42]
表1  有关BMSCs-Exos中不同的miRNA及对应通路
图3  外泌体与相关信号通路在SONFH骨修复中的机制
[1] Liang X Z, Luo D, Chen Y R, et al. Identification of potential autophagy-related genes in steroid-induced osteonecrosis of the femoral head via bioinformatics analysis and experimental verification. Journal of Orthopaedic Surgery and Research, 2022, 17(1): 86.
doi: 10.1186/s13018-022-02977-x
[2] 温家福, 韦标方. 激素性股骨头坏死骨髓间充质干细胞成骨分化的研究进展. 解放军医学杂志, 2020, 45(11): 1207-1214.
Wen J F, Wei B F. Research progress in osteogenic differentiation of bone marrow mesenchymal stem cells in steroid-induced osteonecrosis of the femoral head. Medical Journal of Chinese PLA, 2020, 45(11): 1207-1214.
[3] Chen B Y, Sung C W H, Chen C, et al. Advances in exosomes technology. Clinica Chimica Acta, 2019, 493: 14-19.
doi: 10.1016/j.cca.2019.02.021
[4] Liu H, Li R C, Liu T, et al. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Frontiers in Immunology, 2020, 11: 1912.
doi: 10.3389/fimmu.2020.01912 pmid: 32973792
[5] Ha D H, Kim H K, Lee J, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells, 2020, 9(5): 1157.
doi: 10.3390/cells9051157
[6] Girón J, Maurmann N, Pranke P. The role of stem cell-derived exosomes in the repair of cutaneous and bone tissue. Journal of Cellular Biochemistry, 2022, 123(2): 183-201.
doi: 10.1002/jcb.30144
[7] Qiu X Y, Liu J, Zheng C X, et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Proliferation, 2020, 53(8): e12830.
[8] Wei R, Zhang L, Hu W, et al. Zeb2/Axin2-enriched BMSC-derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. Journal of Molecular Neuroscience: MN, 2022, 72(1): 69-81.
doi: 10.1007/s12031-021-01887-7
[9] Huber J, Griffin M F, Longaker M T, et al. Exosomes: a tool for bone tissue engineering. Tissue Engineering Part B, Reviews, 2022, 28(1): 101-113.
doi: 10.1089/ten.teb.2020.0246
[10] Hao Q Y, Wu Y, Wu Y Y, et al. Tumor-derived exosomes in tumor-induced immune suppression. International Journal of Molecular Sciences, 2022, 23(3): 1461.
doi: 10.3390/ijms23031461
[11] Jin J, Shi Y F, Gong J G, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Research & Therapy, 2019, 10(1): 95.
[12] Bischoff J P, Schulz A, Morrison H. The role of exosomes in intercellular and inter-organ communication of the peripheral nervous system. FEBS Letters, 2022, 596(5): 655-664.
doi: 10.1002/1873-3468.14274
[13] Thakur A, Parra D C, Motallebnejad P, et al. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioactive Materials, 2021, 10: 281-294.
doi: 10.1016/j.bioactmat.2021.08.029
[14] Samanta S, Rajasingh S, Drosos N, et al. Exosomes: new molecular targets of diseases. Acta Pharmacologica Sinica, 2018, 39(4): 501-513.
doi: 10.1038/aps.2017.162 pmid: 29219950
[15] Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): E968-E977.
[16] Liang W S, Han B, Hai Y, et al. Mechanism of action of mesenchymal stem cell-derived exosomes in the intervertebral disc degeneration treatment and bone repair and regeneration. Frontiers in Cell and Developmental Biology, 2022, 9: 833840.
[17] Zhang J, Buller B A, Zhang Z G, et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Experimental Neurology, 2022, 347: 113895.
doi: 10.1016/j.expneurol.2021.113895
[18] Zhang T R, Huang W Q. Angiogenic exosome-derived microRNAs: emerging roles in cardiovascular disease. Journal of Cardiovascular Translational Research, 2021, 14(5): 824-840.
doi: 10.1007/s12265-020-10082-9
[19] Zong L, Huang P, Song Q, et al. Bone marrow mesenchymal stem cells-secreted exosomal H 19 modulates lipopolysaccharides-stimulated microglial M1/M2 polarization and alleviates inflammation-mediated neurotoxicity. American Journal of Translational Research, 2021, 13(3): 935-951.
pmid: 33841631
[20] Wu Y F, Li J, Yuan R, et al. Bone marrow mesenchymal stem cell-derived exosomes alleviate hyperoxia-induced lung injury via the manipulation of microRNA-425. Archives of Biochemistry and Biophysics, 2021, 697: 108712.
[21] Li H L, Liu D P, Li C, et al. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biology International, 2017, 41(12): 1379-1390.
doi: 10.1002/cbin.10869 pmid: 28877384
[22] Kim Y, Nam H J, Lee J, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nature Communications, 2016, 7: 10347.
doi: 10.1038/ncomms10347 pmid: 26757928
[23] Fang S H, He T M, Jiang J R, et al. Osteogenic effect of tsRNA-10277-loaded exosome derived from bone mesenchymal stem cells on steroid-induced osteonecrosis of the femoral head. Drug Design, Development and Therapy, 2020, 14: 4579-4591.
doi: 10.2147/DDDT.S258024 pmid: 33149555
[24] 周山健, 李海乐, 肖大伟, 等. miR-126修饰的间质干细胞来源的外泌体对大鼠早期缺血性股骨头坏死的影响. 西安交通大学学报(医学版), 2018, 39(3): 379-385, 395.
Zhou S J, Li H L, Xiao D W, et al. Influence of exosomes derived from mesenchymal stem cells modified by miR-126 on early avascular necrosis of the femoral head in rats. Journal of Xi’an Jiaotong University (Medical Sciences), 2018, 39(3): 379-385, 395.
[25] Qi X, Zhang J Y, Yuan H, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. International Journal of Biological Sciences, 2016, 12(7): 836-849.
doi: 10.7150/ijbs.14809 pmid: 27313497
[26] Guo S C, Tao S C, Yin W J, et al. Exosomes from human synovial-derived mesenchymal stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head in the rat. International Journal of Biological Sciences, 2016, 12(10): 1262-1272.
doi: 10.7150/ijbs.16150
[27] Lu G D, Cheng P, Liu T, et al. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis. Frontiers in Cell and Developmental Biology, 2020, 8: 608521.
doi: 10.3389/fcell.2020.608521
[28] Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Translational Medicine, 2016, 5(12): 1620-1630.
pmid: 27460850
[29] Cao G J, Meng X Q, Han X D, et al. Exosomes derived from circRNA Rtn4-modified BMSCs attenuate TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E 1 cells by sponging miR-146a. Bioscience Reports, 2020, 40(5): BSR20193436.
[30] Hu Y Q, Tao R Y, Wang L F, et al. Exosomes derived from bone mesenchymal stem cells alleviate compression-induced nucleus pulposus cell apoptosis by inhibiting oxidative stress. Oxidative Medicine and Cellular Longevity, 2021, 2021: 2310025.
[31] Qin Y H, Wang L, Gao Z L, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific Reports, 2016, 6: 21961.
doi: 10.1038/srep21961
[32] Wang Z K, Wu Y M, Zhao Z H, et al. Study on transorgan regulation of intervertebral disc and extra-skeletal organs through exosomes derived from bone marrow mesenchymal stem cells. Frontiers in Cell and Developmental Biology, 2021, 9: 741183.
doi: 10.3389/fcell.2021.741183
[33] Huang Y J, Zhang X M, Zhan J D, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3. Journal of Cellular and Molecular Medicine, 2021, 25(16): 7734-7745.
doi: 10.1111/jcmm.16654 pmid: 34160894
[34] Kwon D G, Kim M K, Jeon Y S, et al. State of the art: the immunomodulatory role of MSCs for osteoarthritis. International Journal of Molecular Sciences, 2022, 23(3): 1618.
doi: 10.3390/ijms23031618
[35] Luo Y J, Xu T, Liu W, et al. Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model. The International Journal of Neuroscience, 2021, 131(2): 170-182.
doi: 10.1080/00207454.2020.1734598
[36] Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977.
[37] Zuo R, Liu M H, Wang Y Q, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Research & Therapy, 2019, 10(1): 30.
[38] Zhao P, Xiao L, Peng J, et al. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. European Review for Medical and Pharmacological Sciences, 2018, 22(12): 3962-3970.
doi: 15280 pmid: 29949171
[39] Zhang W B, Zhong W J, Wang L. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone, 2014, 58: 59-66.
doi: 10.1016/j.bone.2013.09.015
[40] Tang L, Lu W J, Huang J, et al. miR-144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1. Molecular Medicine Reports, 2019, 20(1): 270-280.
[41] Fu Y C, Zhao S R, Zhu B H, et al. MiRNA-27a-3p promotes osteogenic differentiation of human mesenchymal stem cells through targeting ATF3. European Review for Medical and Pharmacological Sciences, 2019, 23(3 Suppl): 73-80.
doi: 18632 pmid: 31389577
[42] Mao R Y, Shen J N, Hu X L. RETRACTED: BMSCs-derived exosomal microRNA-let-7a plays a protective role in diabetic nephropathy via inhibition of USP22 expression. Life Sciences, 2021, 268: 118937.
doi: 10.1016/j.lfs.2020.118937
[43] 孙光源, 王晓元, 任艳丽, 等. 泛素样蛋白UBQLN2通过抑制结肠癌Wnt信号通路发挥抑癌作用. 中国生物化学与分子生物学报, 2022, 38(8): 1078-1086.
Sun G Y, Wang X Y, Ren Y L, et al. Ubiquitin-like protein UBQLN2 exerts tumor suppressor effect by inhibiting activation of Wnt signaling pathway in colon cancer. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(8): 1078-1086.
[44] Xu J F, Yang G H, Pan X H, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One, 2014, 9(12): e114627.
[45] Sato M, Suzuki T, Kawano M, et al. Circulating osteocyte-derived exosomes contain miRNAs which are enriched in exosomes from MLO-Y4 cells. Biomedical Reports, 2017, 6(2): 223-231.
doi: 10.3892/br.2016.824 pmid: 28357077
[46] Wei Y K, Ma H L, Zhou H Q, et al. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis. Aging, 2021, 13(13): 17190-17201.
doi: 10.18632/aging.203169
[47] Peng P J, Nie Z G, Sun F, et al. Glucocorticoids induce femoral head necrosis in rats through the ROS/JNK/c-Jun pathway. FEBS Open Bio, 2021, 11(1): 312-321.
doi: 10.1002/2211-5463.13037 pmid: 33190410
[48] Lian W S, Ko J Y, Chen Y S, et al. microRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death & Disease, 2019, 10: 705.
[49] Deng L L, Wang Y P, Peng Y, et al. Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone, 2015, 79: 37-42.
doi: 10.1016/j.bone.2015.05.022 pmid: 26013558
[50] Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
doi: 10.1038/nature01658
[51] Shen K, Duan A, Cheng J Q, et al. Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway. Acta Biomaterialia, 2022, 143: 173-188.
doi: 10.1016/j.actbio.2022.02.026 pmid: 35202856
[52] Kuang M J, Huang Y, Zhao X G, et al. Exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. International Journal of Biological Sciences, 2019, 15(9): 1861-1871.
doi: 10.7150/ijbs.32262
[53] Chen W K, Zhang H J, Zou M X, et al. LncRNA HOTAIR influences cell proliferation via miR-130b/PTEN/AKT axis in IDD. Cell Cycle, 2022, 21(4): 323-339.
doi: 10.1080/15384101.2021.2020042
[54] 王伟伟, 欧志学, 章晓云, 等. 外泌体在激素性股骨头坏死修复信号交流网络中的调控机制. 中国组织工程研究, 2022, 26(19): 3056-3064.
Wang W W, Ou Z X, Zhang X Y, et al. Regulatory mechanism of exosomes in signal communication network of steroid induced avascular necrosis of the femoral head repair. Chinese Journal of Tissue Engineering Research, 2022, 26(19): 3056-3064.
[55] Yan Y Z, Wang J H, Huang D G, et al. Plasma lipidomics analysis reveals altered lipids signature in patients with osteonecrosis of the femoral head. Metabolomics: Official Journal of the Metabolomic Society, 2022, 18(2): 14.
[56] Li M, Zhang E, Lü L, et al. Effect and mechanisms of vitamin E on early steroid-induced avascular necrosis of femoral head in rats. Chinese Journal of Reparative and Reconstructive Surgery, 2018, 32(11):1421-1428.
[57] 耿军辉, 张丽军, 王亚丽, 等. PI3K/Akt信号通路与肿瘤血管新生的研究进展. 现代肿瘤医学, 2018, 26(9): 1462-1466.
Geng J H, Zhang L J, Wang Y L, et al. The progress of PI3K/Akt signaling pathway and tumor angiogenesis. Journal of Modern Oncology, 2018, 26(9): 1462-1466.
[58] Yuan F L, Xu R S, Jiang D L, et al. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Bone, 2015, 75: 128-137.
doi: 10.1016/j.bone.2015.02.017
[59] 宋世雷, 陈跃平, 章晓云. PI3K/AKT信号通路调控股骨头坏死的相关机制. 中国组织工程研究, 2020, 24(3): 408-415.
Song S L, Chen Y P, Zhang X Y. Mechanism of PI3K/AKT signaling pathway regulating osteonecrosis of the femoral head. Chinese Journal of Tissue Engineering Research, 2020, 24(3): 408-415.
[60] Xue X H, Feng Z H, Li Z X, et al. Salidroside inhibits steroid-induced avascular necrosis of the femoral head via the PI3K/Akt signaling pathway: in vitro and in vivo studies. Molecular Medicine Reports, 2018, 17(3): 3751-3757.
[61] Yu J H, Xia H, Teramoto A, et al. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds. Journal of Biomedical Materials Research Part A, 2018, 106(1): 244-254.
doi: 10.1002/jbm.a.36214 pmid: 28880433
[62] Zha Y, Li Y W, Lin T Y, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics, 2021, 11(1): 397-409.
doi: 10.7150/thno.50741 pmid: 33391482
[63] Zhang Y T, Hao Z C, Wang P F, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Proliferation, 2019, 52(2): e12570.
doi: 10.1111/cpr.12570
[64] Wang X Q, Shah F A, Vazirisani F, et al. Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials, 2020, 230: 119571.
doi: 10.1016/j.biomaterials.2019.119571
[65] Tian T, Zhang H X, He C P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150: 137-149.
doi: S0142-9612(17)30640-3 pmid: 29040874
[66] Mehryab F, Rabbani S, Shahhosseini S, et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomaterialia, 2020, 113: 42-62.
doi: S1742-7061(20)30366-4 pmid: 32622055
[67] Yu H L, Cheng J, Shi W L, et al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomaterialia, 2020, 106: 328-341.
doi: S1742-7061(20)30069-6 pmid: 32027991
[68] Duan S R, Wang F, Cao J W, et al. Exosomes derived from microRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Design, Development and Therapy, 2020, 14: 3143-3158.
doi: 10.2147/DDDT.S255828 pmid: 32821084
[69] He L, Chen Y Y, Ke Z K, et al. Exosomes derived from miRNA-210 overexpressing bone marrow mesenchymal stem cells protect lipopolysaccharide induced chondrocytes injury via the NF-κB pathway. Gene, 2020, 751: 144764.
[70] Huang J H, Xiong J Y, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale, 2021, 13(19): 8740-8750.
doi: 10.1039/d1nr01314a pmid: 33969373
[1] 王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.
[2] 李开通, 刘金青, 蔡望伟, 肖曼, 沈倍奋, 王晶, 冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[3] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[4] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[5] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[6] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[7] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[8] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[9] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[10] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[11] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[12] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[13] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[14] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[15] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.