Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 60-69    DOI: 10.13523/j.cb.2206043
综述     
双特异性抗体副产物去除策略
李谦,梁晓莹,李国柱,何清泉,谭黄虹,王子臣,徐广六,李进,樊梦妮,徐丹**()
南京正大天晴制药有限公司 芳华药物研究院 生物部 南京 210046
Insight into the Purification Strategies for Removing the Byproducts of Bispecific Antibodies
Qian LI,Xiao-ying LIANG,Guo-zhu LI,Qing-quan HE,Huang-hong TAN,Zi-chen WANG,Guang-liu XU,jing LI,Meng-ni FAN,Dan XU**()
Nanjing China Tai Tianqing Pharmaceutical Co., Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
 全文: PDF(2054 KB)   HTML
摘要:

双特异性抗体是一种可以同时结合两种靶点的抗体,与单特异性抗体相比具有疗效高、毒副作用小的优点,因此成为近年来的研究热点。但双特异性抗体是由两种不同的重链和轻链所组成,而且重、轻链的表达难以控制在同一水平,因此在双特异性抗体的组装过程中极易出现各种错配副产物,大大增加了下游纯化的难度与成本。近年来,多家制药公司研发出商业化的双特异性抗体制备平台,这些平台利用独特的分子设计策略极大提升了双特异性抗体的组装成功率。然而,各种双抗分子设计策略不足以完全避免副产物的产生,因此还需要配合各种层析方式来进一步去除双抗分子副产物以提升产品质量。综述了近年来几种主流双特异性抗体研发设计平台,系统归纳了用于去除同源二聚体、半抗体、3/4抗体及聚集体的层析方法,以期为双特异性抗体纯化提供理论依据。

关键词: 双特异性抗体副产物分子设计策略层析    
Abstract:

Bispecific antibodies can simultaneously bind to two targets. Compared with monospecific antibodies, they have the advantages of high efficacy and less toxic and side effects, so they have become a research hotspot in recent years.However, since bispecific antibodies are composed of different heavy chains and light chains, and the expression of heavy and light chains is difficult to control at the same level, it is very easy to form by-products, which greatly increase the difficulty and cost of downstream purification.In recent years, several pharmaceutical companies have developed bispecific antibody preparation platforms, which have greatly improved the success rate of bispecific antibody assembly.However, various double-antibody molecular design strategies are not enough to completely prevent the production of by-products, so various chromatographic methods are needed to further remove the by-products of double-antibody molecules to improve product quality.This paper reviews several mainstream bispecific antibody design platforms in recent years, and systematically summarizes the chromatographic methods for removing homodimers, half antibodies and 3/4 antibodies and aggregates. The comprehensive information should be helpful to provide a theoretical basis for bispecific antibody purification.

Key words: Bispecific antibody    By-products    Molecular design strategies    Chromatography
收稿日期: 2022-06-23 出版日期: 2022-11-04
ZTFLH:  Q51  
通讯作者: 徐丹     E-mail: 1563225340@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李谦
梁晓莹
李国柱
何清泉
谭黄虹
王子臣
徐广六
李进
樊梦妮
徐丹

引用本文:

李谦,梁晓莹,李国柱,何清泉,谭黄虹,王子臣,徐广六,李进,樊梦妮,徐丹. 双特异性抗体副产物去除策略[J]. 中国生物工程杂志, 2022, 42(10): 60-69.

Qian LI,Xiao-ying LIANG,Guo-zhu LI,Qing-quan HE,Huang-hong TAN,Zi-chen WANG,Guang-liu XU,jing LI,Meng-ni FAN,Dan XU. Insight into the Purification Strategies for Removing the Byproducts of Bispecific Antibodies. China Biotechnology, 2022, 42(10): 60-69.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2206043        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/60

图1  不同结构类型双抗分子示意图
双抗开发平台 开发公司 分子设计策略 参考文献
KiH Genentech “杵-臼”结构 [13]
DuetMab AstraZeneca “杵-臼”结构+工程化二硫键 [20]
CrossMab Roche Fab轻重链(HC/LC)互换 [14]
ART-Ig Chugai 静电转向突变 [21]
Biclonics Merus 静电转向突变 [22]
BEAT Glenmark CH3界面交换+ScFv(单链可变片段)替换 [23]
WuXiBody WuXiBioligics CH1/CL区域替换+“杵-臼”结构 [25]
ALiCE Y-Biologics Fc区域替换 [26]
表1  不同双特异性抗体开发平台特征信息
图2  不同双抗开发平台示意图
图3  几种典型双抗同源二聚体示意图
图4  半抗体及3/4抗体示意图
图5  聚集体示意图
副产物类型 层析方式 层析填料 参考文献
同源二聚体 Protein A 亲和层析+疏水性调节 POROS MabCapture A [28]
Kappa轻链亲和层析+pH梯度洗脱 KappaSelect affinity resin [29]
Protein L 亲和层析+ pH梯度洗脱 Capto L [30]
Kappa、Lambda轻链亲和层析 KappaSelect+LambdaFabSelect [17]
离子交换+pH梯度洗脱 Mono S/ Mono Q [31]
混合作用模式层析 Capto MMC ImpRes [33]
混合作用模式层析+盐梯度 Toyopearl MX-Trp 650M [35]
半抗体/3/4抗体 Protein A 亲和层析+疏水性调节 MabSelectSuRe LX [37]
Protein L 亲和层析+ pH梯度洗脱 Capto L [38]
Kappa轻链亲和层析(流穿模式) KappaSelect affinity resin [23]
阳离子交换层析+pH梯度洗脱 POROS®50HS [39]
混合作用模式层析 Capto MMC ImpRes [40]
混合作用模式层析+混合梯度 Capto MMC ImpRes [41]
羟基磷灰石层析+盐梯度洗脱 [42]
聚集体 Protein A 亲和层析+疏水性调节 MabSelectSuReTM LX [44]
Protein L亲和层析+洗脱条件调节 Capto L [43]
Protein L亲和层析+疏水性调节 Protein L [44]
疏水层析+盐梯度洗脱 Phenyl Sepharose HP、Capto Phenyl ImpRes [45]
阳离子层析 SP SepharoseTM High Performance [47]
混合作用模式层析 Capto MMC ImpRes [40]
表2  用于去除双抗副产物层析模式汇总
[1] Lim S M, Pyo K H, Soo R A, et al. The promise of bispecific antibodies: clinical applications and challenges. Cancer Treatment Reviews, 2021, 99: 102240.
doi: 10.1016/j.ctrv.2021.102240
[2] Moek K L, de Groot D J A, de Vries E G E, et al. The antibody-drug conjugate target landscape across a broad range of tumour types. Annals of Oncology, 2017, 28(12): 3083-3091.
doi: 10.1093/annonc/mdx541 pmid: 29045509
[3] Gera N. The evolution of bispecific antibodies. Expert Opinion on Biological Therapy, 2022, 22(8): 945-949.
doi: 10.1080/14712598.2022.2040987
[4] Esfandiari A, Cassidy S, Webster R M. Bispecific antibodies in oncology. Nature Reviews Drug Discovery, 2022, 21(6): 411-412.
doi: 10.1038/d41573-022-00040-2 pmid: 35246638
[5] Linke R, Klein A, Seimetz D. Catumaxomab. mAbs, 2010, 2(2): 129-136.
doi: 10.4161/mabs.2.2.11221 pmid: 20190561
[6] Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. The New England Journal of Medicine, 2017, 376(9): 836-847.
doi: 10.1056/NEJMoa1609783 pmid: 28249141
[7] Scott L J, Kim E S. Emicizumab-kxwh: first global approval. Drugs, 2018, 78(2): 269-274.
doi: 10.1007/s40265-018-0861-2 pmid: 29357074
[8] Davda J, Declerck P, Hu-Lieskovan S, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. Journal for Immunotherapy of Cancer, 2019, 7(1): 105.
doi: 10.1186/s40425-019-0586-0 pmid: 30992085
[9] Zarrineh M, Mashhadi I S, Farhadpour M, et al. Mechanism of antibodies purification by protein A. Analytical Biochemistry, 2020, 609: 113909.
doi: 10.1016/j.ab.2020.113909
[10] Chen S W, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antibody Therapeutics, 2021, 4(2): 73-88.
doi: 10.1093/abt/tbab007 pmid: 34056544
[11] Li Y F. A brief introduction of IgG-like bispecific antibody purification: methods for removing product-related impurities. Protein Expression and Purification, 2019, 155: 112-119.
doi: S1046-5928(18)30607-7 pmid: 30513344
[12] Li Y F. Immunoglobulin-binding protein-based affinity chromatography in bispecific antibody purification: functions beyond product capture. Protein Expression and Purification, 2021, 188: 105976.
doi: 10.1016/j.pep.2021.105976
[13] Ridgway J B B, Presta L G, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Engineering, Design and Selection, 1996, 9(7): 617-621.
doi: 10.1093/protein/9.7.617
[14] Schaefer W, Regula J T, Bähner M, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 11187-11192.
[15] Brinkmann U, Kontermann R E. The making of bispecific antibodies. mAbs, 2017, 9(2): 182-212.
doi: 10.1080/19420862.2016.1268307 pmid: 28071970
[16] Sampei Z, Igawa T, Soeda T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One, 2013, 8(2): e57479.
doi: 10.1371/journal.pone.0057479
[17] Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nature Communications, 2015, 6: 6113.
doi: 10.1038/ncomms7113 pmid: 25672245
[18] Wranik B J, Christensen E L, Schaefer G, et al. LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies. Journal of Biological Chemistry, 2012, 287(52): 43331-43339.
doi: 10.1074/jbc.M112.397869 pmid: 23118228
[20] Li Y F. IgG-like bispecific antibody platforms with built-in purification-facilitating elements. Protein Expression and Purification, 2021, 188: 105955.
doi: 10.1016/j.pep.2021.105955
Wang C L, Vemulapalli B, Cao M Y, et al. A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture. mAbs, 2018, 10(8): 1226-1235.
doi: 10.1080/19420862.2018.1511198 pmid: 30153083
[21] Shiraiwa H, Narita A, Kamata-Sakurai M, et al. Engineering a bispecific antibody with a common light chain: identification and optimization of an anti-CD3 Epsilon and anti-GPC3 bispecific antibody, ERY974. Methods, 2019, 154: 10-20.
doi: S1046-2023(18)30096-3 pmid: 30326272
[22] de Nardis C, Hendriks L J A, Poirier E, et al. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. Journal of Biological Chemistry, 2017, 292(35): 14706-14717.
doi: 10.1074/jbc.M117.793497 pmid: 28655766
[23] Moretti P, Skegro D, Ollier R, et al. BEAT® the bispecific challenge: a novel and efficient platform for the expression of bispecific IgGs. BMC Proceedings, 2013, 7(S6): 9.
[24] Skegro D, Stutz C, Ollier R, et al. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. Journal of Biological Chemistry, 2017, 292(23): 9745-9759.
doi: 10.1074/jbc.M117.782433 pmid: 28450393
[25] Dietrich S, Gross A W, Becker S, et al. Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2020, 1868(1): 140250.
doi: 10.1016/j.bbapap.2019.07.003
[26] Jang S, Song J, Kim N, et al. Development of an antibody-like T-cell engager based on VH-VL heterodimer formation and its application in cancer therapy. Biomaterials, 2021, 271: 120760.
doi: 10.1016/j.biomaterials.2021.120760
[27] Steven M. Chamow P P, Pratap L A. Capture of CH1-containing bispecific antibodies. BioProcess International, 2020, 18(5):130-144.
[28] Tustian A D, Endicott C, Adams B, et al. Development of purification processes for fully human bispecific antibodies based upon modification of protein A binding avidity. mAbs, 2016, 8(4): 828-838.
doi: 10.1080/19420862.2016.1160192 pmid: 26963837
[29] Qin T T, Wang Y, Li Y F. Separating antibody species containing one and two kappa light chain constant region by KappaSelect affinity chromatography. Protein Expression and Purification, 2020, 171: 105618.
doi: 10.1016/j.pep.2020.105618
[30] Chen X J, Wang Y, Wang Y, et al. Protein L chromatography: a useful tool for monitoring/separating homodimers during the purification of IgG-like asymmetric bispecific antibodies. Protein Expression and Purification, 2020, 175: 105711.
doi: 10.1016/j.pep.2020.105711
[31] Sharkey B, Pudi S, Wallace Moyer I, et al. Purification of common light chain IgG-like bispecific antibodies using highly linear pH gradients. mAbs, 2017, 9(2): 257-268.
doi: 10.1080/19420862.2016.1267090 pmid: 27937066
[32] Zhang L, Parasnavis S, Li Z J, et al. Mechanistic modeling based process development for monoclonal antibody monomer-aggregate separations in multimodal cation exchange chromatography. Journal of Chromatography A, 2019, 1602: 317-325.
doi: S0021-9673(19)30580-1 pmid: 31248584
[33] Tang J Q, Zhang X D, Chen T, et al. Removal of half antibody, hole-hole homodimer and aggregates during bispecific antibody purification using MMC ImpRes mixed-mode chromatography. Protein Expression and Purification, 2020, 167: 105529.
doi: 10.1016/j.pep.2019.105529
[34] Zhang Y, Cai L L, Wang Y, et al. Processing of high-salt-containing protein A eluate using mixed-mode chromatography in purifying an aggregation-prone antibody. Protein Expression and Purification, 2019, 164: 105458.
doi: 10.1016/j.pep.2019.105458
[35] Nicolas F, Franois D J, Keith W, et al. methods of purifying bispecific antibodies:EPO,EP3268390A1.2018-01-17[2018-01-17]. https://wenku.baidu.com/view/47f290b8de3383c4bb4cf7ec4afe04a1b071b0f6?fr=xueshu.
[36] Qian G. Purification of monoclonal antibodies:USA,WO2011005818A1.2011-01-13[2011-01-13]. https://wenku.baidu.com/view/06a03656f142336c1eb91a37f111f18583d00cfc.html?fr=income2-wk_app_search_ctrX-search.
[37] Chen X J, Wang Y, Li Y F. Removing half antibody byproduct by protein A chromatography during the purification of a bispecific antibody. Protein Expression and Purification, 2020, 172: 105635.
doi: 10.1016/j.pep.2020.105635
[38] Wang Y, Chen X J, Wang Y, et al. Removing a difficult-to-separate byproduct by Capto L affinity chromatography during the purification of a WuXiBody-based bispecific antibody. Protein Expression and Purification, 2020, 175: 105713.
doi: 10.1016/j.pep.2020.105713
[39] Kluters S, Hafner M, von Hirschheydt T, et al. Solvent modulated linear pH gradient elution for the purification of conventional and bispecific antibodies: Modeling and application. Journal of Chromatography A, 2015, 1418: 119-129.
doi: S0021-9673(15)01359-X pmid: 26431858
[40] Wan Y, Zhang T, Wang Y M, et al. Removing light chain-missing byproducts and aggregates by Capto MMC ImpRes mixed-mode chromatography during the purification of two WuXiBody-based bispecific antibodies. Protein Expression and Purification, 2020, 175: 105712.
[41] Wan Y, Wang Y M, Zhang T, et al. Application of pH-salt dual gradient elution in purifying a WuXiBody-based bispecific antibody by MMC ImpRes mixed-mode chromatography. Protein Expression and Purification, 2021, 181: 105822.
doi: 10.1016/j.pep.2021.105822
[42] Gagnon P. Improved antibody aggregate removal by hydroxyapatite chromatography in the presence of polyethylene glycol. Journal of Immunological Methods, 2008, 336(2): 222-228.
doi: 10.1016/j.jim.2008.05.002 pmid: 18571666
[43] Wang Y, Chen X J, Wang Y, et al. Impact of salt concentration in mobile phase on antibody retention in Protein A, Protein L and KappaSelect affinity chromatography. Protein Expression and Purification, 2021, 178: 105786.
doi: 10.1016/j.pep.2020.105786
[44] Chen S W, Tan D, Yang Y S, et al. Investigation of the effect of salt additives in protein L affinity chromatography for the purification of tandem single-chain variable fragment bispecific antibodies. mAbs, 2020, 12(1): 1718440.
[45] Hall T, Kelly G M, Emery W R. Use of mobile phase additives for the elution of bispecific and monoclonal antibodies from phenyl based hydrophobic interaction chromatography resins. Journal of Chromatography B, 2018, 1096: 20-30.
doi: S1570-0232(18)30943-7 pmid: 30130673
[46] Wollacott R B, Casaz P L, Morin T J, et al. Analytical characterization of a monoclonal antibody therapeutic reveals a three-light chain species that is efficiently removed using hydrophobic interaction chromatography. mAbs, 2013, 5(6): 925-935.
doi: 10.4161/mabs.26192 pmid: 23995619
[47] Hall T, Wilson J J, Brownlee T J, et al. Alkaline cation-exchange chromatography for the reduction of aggregate and a mis-formed disulfide variant in a bispecific antibody purification process. Journal of Chromatography B, 2015, 975: 1-8.
doi: 10.1016/j.jchromb.2014.11.002 pmid: 25462105
[48] Ishihara T, Miyahara M, Yamamoto K. Monoclonal antibody purification using activated carbon as a replacement for protein A affinity chromatography. Journal of Chromatography B, 2018, 1102-1103: 1-7.
[1] 汪琨,赵福运,徐云飞,袁小凤,赵伟春. 茄病镰刀菌单克隆抗体的制备及胶体金免疫层析试纸条的研发*[J]. 中国生物工程杂志, 2022, 42(7): 54-61.
[2] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[3] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[4] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[5] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[6] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[7] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[8] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[9] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[10] 赵伟,李敬达,刘庆平. 重组蛋白下游连续纯化技术的研究进展 *[J]. 中国生物工程杂志, 2018, 38(10): 74-81.
[11] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[12] 夏启玉, 李美英, 杨小亮, 肖苏生, 贺萍萍, 郭安平. 免疫层析试纸条技术及其在转基因检测中的应用[J]. 中国生物工程杂志, 2017, 37(2): 101-110.
[13] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[14] 薛玲, 刘江宁, 张耀, 张纯, 王祺, 秦川, 刘永东, 苏志国. EV71多表位抗原亲和纯化及类病毒颗粒胞外自组装[J]. 中国生物工程杂志, 2016, 36(7): 34-40.
[15] 蒙国基, 邓义熹, 李乐, 罗豪晖, 于玉根. 变速上样在MabSelect填料上分离WLB303[J]. 中国生物工程杂志, 2016, 36(6): 65-75.