Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (7): 1-11    DOI: 10.13523/j.cb.2202052
研究报告     
不同类型神经细胞对低氧的敏感性研究*
胡文宇1,**,李硕硕2,**,程金波2,***(),袁增强2,***()
1.南华大学衡阳医学院 衡阳 421001
2.军事医学研究院军事认知与脑科学研究所 北京 100850
The Sensitivity of Different Neural Cells to Hypoxia
Wen-yu HU1,**,Shuo-shuo LI2,**,Jin-bo CHENG2,***(),Zeng-qiang YUAN2,***()
1. School of Medicine, University of South China, Hengyang 421001, China
2. Institute of Military Cognition and Brain Science, Academy of Military Medical Sciences, Beijing 100850, China
 全文: PDF(4842 KB)   HTML
摘要: 目的 阐明低氧对神经细胞在能量代谢、氧化应激、炎症等方面的影响,探讨不同类型神经细胞响应低氧刺激的敏感性, 为低氧诱导的脑损伤病理机制研究提供理论基础。方法 将不同类型的神经细胞系(BV2、N9、Gl261、HT22)低氧(0.1% O2,5% CO2)处理0~24 h,用CCK8法(Cell Counting Kit-8)检测细胞增殖,发光细胞活力测定法(luminescent cell viability assay)检测细胞活力。提取各细胞总RNA及总蛋白质,通过实时荧光定量PCR (quantitative real time-PCR,RT-qPCR)、免疫印迹(Western blot)、流式细胞仪等技术检测能量代谢、炎症相关基因表达水平和氧化应激水平。结果 低氧处理后,各类神经细胞增殖明显减慢。小胶质细胞BV2和N9对低氧的响应主要表现在炎症因子和糖代谢相关酶的改变,星形胶质细胞Gl261和神经元HT22对低氧的响应主要表现在糖代谢相关酶的改变,小胶质细胞和星形胶质细胞在低氧刺激下氧化应激水平显著增加。结论 不同类型神经细胞响应低氧刺激的敏感性不同。能量代谢和炎症反应方面,小胶质细胞对低氧处理更敏感,表现为糖酵解酶显著上调,炎症因子变化明显;氧化应激方面,小胶质细胞和星形胶质细胞对低氧处理更敏感,表现为氧化应激响应快,ROS产生显著增加。
关键词: 低氧神经细胞炎症氧化应激能量代谢    
Abstract:

Objective: In order to illustrate the hypoxia-induced changes of neural cells in inflammatory response, oxidative stress, and energy metabolism process and to compare the sensitivity of neural cells’ responses to hypoxia. Methods: Different types of neural cells (BV2, N9, Gl261, HT22) were treated with hypoxia (0.1% O2, 5% CO2) for 0-24 hours. Cell proliferation was detected by Cell Counting Kit-8 method and cell viability was assayed by CellTiter-Glo Luminescent Cell Viability Assay. Total RNA was extracted by Trizol reagent, and the inflammation, oxidative stress, and energy metabolism-related genes expression were measured by quantitative real-time PCR and Western blot. The ROS production was detected by flow cytometer with fluorescence probe. Results: Hypoxia stimulation decreased cell proliferation and cell viability. The hypoxia-induced changes of microglial cells (BV2 and N9) were mainly involved in inflammatory response and glucose metabolism process. The changes of astrocytes Gl261 and neural cell HT22 were mainly involved in glucose metabolism process. Hypoxia stimulation significantly increased oxidative stress in microglia and astrocytes. Conclusion: Different types of neural cells have different degrees of sensitivity in response to hypoxic stimulation. In terms of energy metabolism and inflammatory response, microglia are more sensitive to hypoxia treatment, which is manifested as a significant up-regulation of glycolytic enzymes and inflammation genes, whereas microglia and astrocytes are more sensitive to hypoxia treatment in terms of oxidative stress, which is indicated by their quick response and significant increase of ROS production.

Key words: Hypoxia    Neural cells    Inflammation    Oxidative stress    Energy metabolism
收稿日期: 2022-02-28 出版日期: 2022-08-03
ZTFLH:  R34  
基金资助: *国家自然科学基金重点项目(81930029)
通讯作者: 胡文宇,李硕硕,程金波,袁增强     E-mail: cheng_jinbo@126.com;zyuan620@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡文宇
李硕硕
程金波
袁增强

引用本文:

胡文宇,李硕硕,程金波,袁增强. 不同类型神经细胞对低氧的敏感性研究*[J]. 中国生物工程杂志, 2022, 42(7): 1-11.

Wen-yu HU,Shuo-shuo LI,Jin-bo CHENG,Zeng-qiang YUAN. The Sensitivity of Different Neural Cells to Hypoxia. China Biotechnology, 2022, 42(7): 1-11.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2202052        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I7/1

Gene Forward primer Reverse primer
β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
HK1 CTGGGGAGACTAGCCCTGT TGTCCCATAGTGTAGAGGTGATG
HK2 TGATCGCCTGCTTATTCACGG AACCGCCTAGAAATCTCCAGA
LDHA TGTCTCCAGCAAAGACTACTGT GACTGTACTTGACAATGTTGGGA
PDK1 GGACTTCGGGTCAGTGAATGC TCCTGAGAAGATTGTCGGGGA
PGK1 ATGTCGCTTTCCAACAAGCTG GCTCCATTGTCCAAGCAGAAT
PKM2 GCCGCCTGGACATTGACTC CCATGAGAGAAATTCAGCCGAG
iNOS GTTCTCAGCCCAACAATACAAGA GTGGACGGGTCGATGTCAC
SOD GCCCGCTAAGTGCTGAGTC CCAGAAGGATAACGGATGCCA
CAT AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG
IL-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
Arg1 CTCCAAGCCAAAGTCCTTAGAG AGGAGCTGTCATTAGGGACATC
CD206 CTCTGTTCAGCTATTGGACGC CGGAATTTCTGGGATTCAGCTTC
TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG
IL-6 GCTACCAAACTGGATATAATCAGGA CCAGGTAGCTATGGTACTCCAGAA
IL-1β TGTAATGAAAGACGGCACACC TCTTCTTTGGGTATTGCTTGG
表1  荧光定量PCR引物序列
图1  低氧处理引起细胞增殖减慢
图2  低氧处理引起细胞活力降低
图3  低氧处理后糖代谢相关基因mRNA水平变化
图4  低氧处理后蛋白质水平变化
图5  低氧可诱导神经细胞ROS的生成
图6  低氧处理后氧化应激相关基因mRNA水平变化
图7  低氧处理后炎症相关基因mRNA水平的变化
[1] Wilson M H, Newman S, Imray C H. The cerebral effects of ascent to high altitudes. The Lancet Neurology, 2009, 8(2): 175-191.
doi: 10.1016/S1474-4422(09)70014-6
[2] Luks A M, Swenson E R, Bärtsch P. Acute high-altitude sickness. European Respiratory Review, 2017, 26(143): 160096.
doi: 10.1183/16000617.0096-2016
[3] Leissner K B, Mahmood F U. Physiology and pathophysiology at high altitude: considerations for the anesthesiologist. Journal of Anesthesia, 2009, 23(4): 543-553.
doi: 10.1007/s00540-009-0787-7 pmid: 19921365
[4] West J B. High-altitude medicine. The Lancet Respiratory Medicine, 2015, 3(1): 12-13.
doi: 10.1016/S2213-2600(14)70238-3
[5] Ma J Q, Wang C Y, Sun Y B, et al. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia. International Journal of Pharmaceutics, 2020, 591: 120002.
doi: 10.1016/j.ijpharm.2020.120002
[6] Galinsky R, Lear C A, Dean J M, et al. Complex interactions between hypoxia-ischemia and inflammation in preterm brain injury. Developmental Medicine and Child Neurology, 2018, 60(2): 126-133.
doi: 10.1111/dmcn.13629 pmid: 29194585
[7] Zhang P, Ke J, Li Y, et al. Long-term exposure to high altitude hypoxia during pregnancy increases fetal heart susceptibility to ischemia/reperfusion injury and cardiac dysfunction. International Journal of Cardiology, 2019, 274: 7-15.
doi: S0167-5273(18)31904-1 pmid: 30017521
[8] Lafuente J V, Bermudez G, Camargo-Arce L, et al. Blood-brain barrier changes in high altitude. CNS & Neurological Disorders Drug Targets, 2016, 15(9): 1188-1197.
[9] Semenza G L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine, 2001, 7(8): 345-350.
doi: 10.1016/s1471-4914(01)02090-1 pmid: 11516994
[10] Kierans S J, Taylor C T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. The Journal of Physiology, 2021, 599(1): 23-37.
doi: 10.1113/JP280572
[11] Murray A J, Montgomery H E, Feelisch M, et al. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochemical Society Transactions, 2018, 46(3): 599-607.
doi: 10.1042/BST20170502
[12] Ge R L, Simonson T S, Gordeuk V, et al. Metabolic aspects of high-altitude adaptation in Tibetans. Experimental Physiology, 2015, 100(11): 1247-1255.
doi: 10.1113/EP085292
[13] Gaur P, Prasad S, Kumar B, et al. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. International Journal of Biometeorology, 2021, 65(4): 601-615.
doi: 10.1007/s00484-020-02037-1
[14] Iturriaga R, Moya E A, del Rio R. Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Experimental Physiology, 2015, 100(2): 149-155.
doi: 10.1113/expphysiol.2014.079525 pmid: 25523440
[15] Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. Journal of Neuroimmune Pharmacology, 2014, 9(2): 142-160.
doi: 10.1007/s11481-014-9531-7 pmid: 24610033
[16] Bocan T M, Stafford R G, Brown J L, et al. Characterization of brain inflammation, apoptosis, hypoxia, blood-brain barrier integrity and metabolism in venezuelan equine encephalitis virus (VEEV TC-83) exposed mice by in vivo positron emission tomography imaging. Viruses, 2019, 11(11): 1052.
[17] Xu T X, Zhao S Z, Dong M, et al. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia. European Review for Medical and Pharmacological Sciences, 2016, 20(3): 399-406.
doi: 10268 pmid: 26914112
[18] Chis I C, Baltaru D, Dumitrovici A, et al. Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart. Physiology International, 2018, 105(3): 233-246.
doi: 10.1556/2060.105.2018.3.23
[19] Liu L P, Cash T P, Jones R G, et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Molecular Cell, 2006, 21(4): 521-531.
doi: 10.1016/j.molcel.2006.01.010
[20] Pissarek M, Garcia de Arriba S, Schäfer M, et al. Changes by short-term hypoxia in the membrane properties of pyramidal cells and the levels of purine and pyrimidine nucleotides in slices of rat neocortex; effects of agonists and antagonists of ATP-dependent potassium channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1998, 358(4): 430-439.
doi: 10.1007/PL00005275
[21] Semenza G L, Jiang B H, Leung S W, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 1996, 271(51): 32529-32537.
doi: 10.1074/jbc.271.51.32529 pmid: 8955077
[22] Massari F, Ciccarese C, Santoni M, et al. Metabolic phenotype of bladder cancer. Cancer Treatment Reviews, 2016, 45: 46-57.
doi: 10.1016/j.ctrv.2016.03.005
[23] Gwak G Y, Yoon J H, Kim K M, et al. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. Journal of Hepatology, 2005, 42(3): 358-364.
doi: 10.1016/j.jhep.2004.11.020
[24] Riddle S R, Ahmad A, Ahmad S, et al.Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology Lung Cellular and Molecular Physiology, 2000, 278(2): L407-L416.
doi: 10.1152/ajplung.2000.278.2.L407
[25] Guillemin K, Krasnow M A. The hypoxic response: huffing and HIFing. Cell, 1997, 89(1): 9-12.
pmid: 9094708
[26] Koch A, Ebert E V, Seitz T, et al. Characterization of glycolysis-related gene expression in malignant melanoma. Pathology - Research and Practice, 2020, 216(1): 152752.
doi: 10.1016/j.prp.2019.152752
[27] Brunelle J K, Bell E L, Quesada N M, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 2005, 1(6): 409-414.
pmid: 16054090
[28] Kaelin W G Jr. ROS: really involved in oxygen sensing. Cell Metabolism, 2005, 1(6): 357-358.
doi: 10.1016/j.cmet.2005.05.006
[29] Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biology, 2017, 12: 216-225.
doi: S2213-2317(17)30119-2 pmid: 28259102
[30] Vincenzi F, Ravani A, Pasquini S, et al. Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. Journal of Cellular Physiology, 2017, 232(5): 1200-1208.
doi: 10.1002/jcp.25606
[31] Martínez-Romero R, Cañuelo A, Siles E, et al. Nitric oxide modulates hypoxia-inducible factor-1 and poly(ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. Journal of Applied Physiology (Bethesda, Md: 1985), 2012, 112(5): 816-823.
doi: 10.1152/japplphysiol.00898.2011
[32] Lu D Y, Liou H C, Tang C H, et al. Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1α. Biochemical Pharmacology, 2006, 72(8): 992-1000.
doi: 10.1016/j.bcp.2006.06.038
[33] Cazevieille C, Muller A, Meynier F, et al. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radical Biology & Medicine, 1993, 14(4): 389-395.
doi: 10.1016/0891-5849(93)90088-C
[34] McGarry T, Biniecka M, Veale D J, et al. Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 2018, 125: 15-24.
doi: S0891-5849(18)30145-X pmid: 29601945
[35] Merelli A, Repetto M, Lazarowski A, et al. Hypoxia, oxidative stress, and inflammation: three faces of neurodegenerative diseases. Journal of Alzheimer’s Disease: JAD, 2021, 82(s1): S109-S126.
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[4] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[5] 贾振伟. SIRT1功能及其对卵泡发育和卵母细胞成熟的调控作用 *[J]. 中国生物工程杂志, 2020, 40(10): 51-56.
[6] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[7] 周年, 胡宁, 龚璇, 汪长东, 廖军义, 梁熙, 黄伟. AdEasy重组腺病毒系统对Ad-HIF1α的构建和鉴定[J]. 中国生物工程杂志, 2014, 34(3): 34-40.
[8] 黄小娟, 王鸣刚, 廖世奇, 张虹, 王炯蓉, 马瑾, 杨楠, 马宁. 中断BMSCs向神经细胞诱导分化的细胞的恶变研究[J]. 中国生物工程杂志, 2014, 34(3): 26-33.
[9] 尹卫国, 高媛, 梁瑜, 李映菊, 肖建华. 白细胞介素-1受体相关激酶-2的共价修饰与激酶活性的研究[J]. 中国生物工程杂志, 2011, 31(10): 12-17.
[10] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[11] 方松刚 刘迪秋 李忠 邹桂伟 王光勇 田荣欢. 动物抗低氧胁迫相关基因的表达调控机制[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[12] 方松刚, 刘迪秋, 李忠, 邹桂伟, 王光勇, 田荣欢. 动物抗低氧胁迫相关基因的表达调控机制[J]. 中国生物工程杂志, 2010, 30(10): 79-85.
[13] 芦秀丽1刘剑利1,曹向宇,侯芳芳,高兵. 24-脱氢胆固醇还原酶抗氧化应激作用的功能结构域的鉴定[J]. 中国生物工程杂志, 2009, 29(05): 50-54.
[14] 鲍柳君,叶荣,韩甫,张军超,张焕相. 小鼠胚胎干细胞结合丝素材料向神经细胞分化的实验研究[J]. 中国生物工程杂志, 2008, 28(12): 72-76.
[15] 房佰俊, 史明霞, 廖联明, 刘煜昊, 扬少光, 赵春华. null[J]. 中国生物工程杂志, 2004, 24(8): 48-53.