Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 174-181    DOI: 10.13523/j.cb.2107066
综述     
硅纳米线在生物传感器中的应用概述
朱舒1,朱利丰1,杨朔1,靳然1,王玉生2,*(),孙宝全2,*()
1 苏州大学纳米科学技术学院 苏州 215123
2 苏州大学功能纳米与软物质研究院 苏州 215123
Applications of Silicon Nanowires in Biosensors:A Review
ZHU Shu1,ZHU Li-feng1,YANG Shuo1,JIN Ran1,WANG Yu-sheng2,*(),SUN Bao-quan2,*()
1 College of Nano Science & Technology, Soochow University, Suzhou 215123, China
2 Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, China
 全文: PDF(3199 KB)   HTML
摘要:

硅纳米线(SiNW)作为一种新型一维纳米材料,具有高比表面积、高稳定性等特点,在传感器领域得到了重视和研究。随着硅纳米线制备工艺优化、修饰方式多样化,以硅纳米线为载体的生物传感器被应用到了金属离子检测、蛋白质检测等诸多领域,较为优良的生物兼容性为生物学研究中的单细胞动态、实时监测提供了途径,电学、光学等不同检测手段也促进了硅纳米线生物传感器的机制研究。在生物化学物质传感检测中,传感器的敏感性、专一性和稳定性是衡量其性能的重要指标。硅纳米线化学性质稳定,为传感器的制备提供了良好的平台,在不同的应用场景中,传感器对硅纳米线的表面修饰提出了较高的要求。为此,研究人员提出了不同的传感机制。在电学信号传感方式中,硅纳米线场效应管(SiNW-FET)通过测量硅纳米线表面电荷变化引发的电导率变化,实现了对目标物质的超灵敏检测。在光学信号传感方式中,荧光分子识别应用较广,当目标物质与受体结合后通过荧光的增强、猝灭,波长的移动等多种方式传递信号,响应较快、检测手段较为便捷。对硅纳米线场效应管生物传感器和硅纳米线荧光传感器的机制与应用进行了概述,对今后硅纳米线在生物传感领域的发展提出了展望。

关键词: 硅纳米线生物传感器场效应管荧光传感器    
Abstract:

Silicon nanowire (SiNW) is one of the one-dimensional nanomaterials, and has been emerged as the promising sensing materials due to large surface area to volume ratio and high stability. The research of SiNW in sensing field has received wide attention. With the development of SiNW synthesis techniques and modification methods, biosensors based on silicon nanowires are now introduced into many research areas, including the detection of metal ions, early protein biomarkers and drug screening. On the other hand, high biocompatibility and commercial feasibility of silicon nanowires provide the potential to dynamic and real-time monitoring of single cell. Meanwhile, the research on silicon-based biosensors reveals different mechanisms like electrical, optical methods. Sensitivity, specificity and stability are important indicators of sensors to measure the performance during the detection of biochemical substances. Stable chemical properties of silicon nanowires provide an ideal platform for the fabrication of sensors. However, the surface modification remains as one of the challenges when biosensors based on silicon nanowires are used for different application scenarios. Depending on different requirements for sensing, silicon-based biosensors with different sensing mechanisms have been proposed. In terms of biosensors based on electrical signals, SiNW field-effect transistor (SiNW-FET) has been widely studied, which achieves ultra-sensitive detection of target substances by detecting the output electrical signal of sensor through the conductivity change of nanowire induced by surface charge density. Among biosensors based on optical signals, SiNW-based fluorescent sensor achieves detection by measuring the change of fluorescence intensity or wavelength, enabling fast and convenient detection. In this paper, the applications of silicon nanowires in biosensors are summarized, and the sensing mechanisms of SiNW-FET and SiNW-based fluorescent sensor are discussed. Finally, the future research and development of silicon nanowires in biosensors are prospected.

Key words: Silicon nanowire    Biosensor    Field effect transistor    Fluorescent sensor
收稿日期: 2021-07-30 出版日期: 2022-03-03
ZTFLH:  TB383  
通讯作者: 王玉生,孙宝全     E-mail: yushengwang@suda.edu.cn;bqsun@suda.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱舒
朱利丰
杨朔
靳然
王玉生
孙宝全

引用本文:

朱舒,朱利丰,杨朔,靳然,王玉生,孙宝全. 硅纳米线在生物传感器中的应用概述[J]. 中国生物工程杂志, 2022, 42(1/2): 174-181.

ZHU Shu,ZHU Li-feng,YANG Shuo,JIN Ran,WANG Yu-sheng,SUN Bao-quan. Applications of Silicon Nanowires in Biosensors:A Review. China Biotechnology, 2022, 42(1/2): 174-181.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2107066        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/174

图1  硅纳米线阵列形貌的电镜图
图2  SiNW-FET的传感机制简图[9]
传感模式 底物存在形式 目标物质 最低检测限/(nmol/L) 线性范围/(nmol/L) 参考文献
荧光猝灭 底物修饰的硅纳米线 Cu2+及复合Cu2+ 31 50~400 [28]
荧光猝灭 底物修饰的硅纳米线 Cu2+ 10 [46]
荧光增强 底物分子 Cu2+ 25 0~25 000 [47]
比率荧光 底物分子 Cu2+ 20 100~20 000 [48]
荧光猝灭 底物修饰的硅纳米线 Hg2+ 0.005 0.005~5 [38]
荧光猝灭 底物修饰的量子点 Hg2+ 1.8 5~41 000 [49]
荧光猝灭 底物修饰的纳米颗粒 Hg2+ 60 200~20 000 [50]
表1  部分利用荧光分子识别检测金属离子的器件传感性能对比
图3  经过修饰的硅纳米线与Cu2+复合物相互作用[28]
图4  经过修饰的硅纳米线与Ca2+相互作用的荧光图象[45]
[1] Farré M, Barceló D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends in Analytical Chemistry, 2003, 22(5):299-310.
doi: 10.1016/S0165-9936(03)00504-1
[2] Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature, 1993, 361(6408):186-187.
doi: 10.1038/361186a0
[3] Viswanathan S, Radecka H, Radecki J. Electrochemical biosensors for food analysis. Monatshefte Für Chemie - Chemical Monthly, 2009, 140(8):891-899.
doi: 10.1007/s00706-009-0143-5
[4] Li B R, Hsieh Y J, Chen Y X, et al. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. Journal of the American Chemical Society, 2013, 135(43):16034-16037.
doi: 10.1021/ja408485m
[5] Qian L, Mao J F, Tian X Q, et al. In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sensors and Actuators B: Chemical, 2013, 176:952-959.
doi: 10.1016/j.snb.2012.09.076
[6] Stern E, Vacic A, Rajan N K, et al. Label-free biomarker detection from whole blood. Nature Nanotechnology, 2010, 5(2):138-142.
doi: 10.1038/nnano.2009.353 pmid: 20010825
[7] Zhang G J, Ning Y. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Analytica Chimica Acta, 2012, 749:1-15.
doi: 10.1016/j.aca.2012.08.035
[8] Gao A R, Chen S X, Wang Y L, et al. Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sensors and Materials, 2018, 30(8):1619.
doi: 10.18494/SAM.2018.1829
[9] Smith R, Geary S M, Salem A K. Silicon nanowires and their impact on cancer detection and monitoring. ACS Applied Nano Materials, 2020, 3(9):8522-8536.
doi: 10.1021/acsanm.0c01572
[10] Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533):1289-1292.
doi: 10.1126/science.1062711 pmid: 11509722
[11] Anand A, Liu C R, Chou A C, et al. Detection of K+ efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sensors, 2017, 2(1):69-79.
doi: 10.1021/acssensors.6b00505
[12] Curreli M, Zhang R, Ishikawa F N, et al. Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Transactions on Nanotechnology, 2008, 7(6):651-667.
doi: 10.1109/TNANO.2008.2006165
[13] Wang J. SURVEY AND SUMMARY:From DNA biosensors to gene chips. Nucleic Acids Research, 2000, 28(16):3011-3016.
pmid: 10931914
[14] Hahm J I, Lieber C M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 2004, 4(1):51-54.
doi: 10.1021/nl034853b
[15] Adam T, Hashim U. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosensors and Bioelectronics, 2015, 67:656-661.
doi: 10.1016/j.bios.2014.10.005
[16] Ivanov Y, Pleshakova T, Malsagova K, et al. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors, 2019, 19(23):5248.
doi: 10.3390/s19235248
[17] Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses. PNAS, 2004, 101(39):14017-14022.
doi: 10.1073/pnas.0406159101
[18] Chiang P L, Chou T C, Wu T H, et al. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chemistry - an Asian Journal, 2012, 7(9):2073-2079.
doi: 10.1002/asia.201200222
[19] Malsagova K A, Pleshakova T O, Galiullin R A, et al. Ultrasensitive nanowire-based detection of HCVcoreAg in the serum using a microwave generator. Analytical Methods, 2018, 10(23):2740-2749.
doi: 10.1039/C8AY00495A
[20] Zheng G F, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 2005, 23(10):1294-1301.
doi: 10.1038/nbt1138
[21] Zheng G F, Gao X, Lieber C M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Letters, 2010, 10(8):3179-3183.
doi: 10.1021/nl1020975
[22] Zhang G J, Huang M J, Ang J J, et al. Label-free detection of carbohydrate-protein interactions using nanoscale field-effect transistor biosensors. Analytical Chemistry, 2013, 85(9):4392-4397.
doi: 10.1021/ac3036525
[23] Stern E, Wagner R, Sigworth F J, et al. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007, 7(11):3405-3409.
doi: 10.1021/nl071792z pmid: 17914853
[24] Vu C A, Pan P H, Yang Y S, et al. Combination of aptamer amplifier and antigen-binding fragment probe as a novel strategy to improve detection limit of silicon nanowire field-effect transistor immunosensors. Sensors, 2021, 21(2):650.
doi: 10.3390/s21020650
[25] Quang D T, Kim J S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews, 2010, 110(10):6280-6301.
doi: 10.1021/cr100154p pmid: 20726526
[26] Alhmoud H, Brodoceanu D, Elnathan R, et al. A MACEing silicon: Towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science, 2021, 116:100636.
doi: 10.1016/j.pmatsci.2019.100636
[27] Yan Q T, Fang L P, Wei J Y, et al. Silicon nanowires enhanced proliferation and neuronal differentiation of neural stem cell with vertically surface microenvironment. Journal of Biomaterials Science, Polymer Edition, 2017, 28(13):1394-1407.
doi: 10.1080/09205063.2017.1329888
[28] Miao R, Mu L X, Zhang H Y, et al. Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Letters, 2014, 14(6):3124-3129.
doi: 10.1021/nl500276x
[29] Cao X X, Mu L X, Chen M, et al. Silicon nanowires: single silicon nanowire-based fluorescent sensor for endogenous hypochlorite in an individual cell. Advanced Biosystems, 2018, 2(12):1870112.
doi: 10.1002/adbi.v2.12
[30] Xu W F, Mu L X, Miao R, et al. Fluorescence sensor for Cu(II) based on R6G derivatives modified silicon nanowires. Journal of Luminescence, 2011, 131(12):2616-2620.
doi: 10.1016/j.jlumin.2011.06.048
[31] Zhang T P, Mu L X, She G W, et al. 2×2 Fluorescent sensor array based on SiNWs for analysis of Pb2+, Cd2+, Cr3+ and Hg2+. Journal of Luminescence, 2019, 209:267-273.
doi: 10.1016/j.jlumin.2019.01.055
[32] Wang S T, Zhang Y L, Ning Y, et al. A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization. The Analyst, 2015, 140(2):434-439.
doi: 10.1039/C4AN01738B
[33] Yang R H, Jin J Y, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. Journal of the American Chemical Society, 2008, 130(26):8351-8358.
doi: 10.1021/ja800604z
[34] Guo S, Du D X, Tang L N, et al. PNA-assembled graphene oxide for sensitive and selective detection of DNA. The Analyst, 2013, 138(11):3216-3220.
doi: 10.1039/c3an00266g
[35] Song S P, Liang Z Q, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angewandte Chemie (International Ed in English), 2009, 48(46):8670-8674.
doi: 10.1002/anie.v48:46
[36] Huang Y X, Shi Y M, Yang H Y, et al. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale, 2015, 7(6):2245-2249.
doi: 10.1039/C4NR07162J
[37] Su S, Wei X P, Zhong Y L, et al. Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano, 2012, 6(3):2582-2590.
doi: 10.1021/nn2050449
[38] Xie J, Jiang X X, Zhong Y L, et al. Stem-loop DNA-assisted silicon nanowires-based biochemical sensors with ultra-high sensitivity, specificity, and multiplexing capability. Nanoscale, 2014, 6(15):9215-9222.
doi: 10.1039/C4NR01097C
[39] Zhang G J, Chua J H, Chee R E, et al. Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosensors and Bioelectronics, 2008, 23(11):1701-1707.
doi: 10.1016/j.bios.2008.02.006
[40] Song S P, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews, 2010, 39(11):4234-4243.
doi: 10.1039/c000682n
[41] Serre P, Ternon C, Stambouli V, et al. Fabrication of silicon nanowire networks for biological sensing. Sensors and Actuators B: Chemical, 2013, 182:390-395.
doi: 10.1016/j.snb.2013.03.022
[42] Veerbeek J, Steen R, Vijselaar W, et al. Selective functionalization with PNA of silicon nanowires on silicon oxide substrates. Langmuir, 2018, 34(38):11395-11404.
doi: 10.1021/acs.langmuir.8b02401 pmid: 30179484
[43] Xing Y, Zhou Y, Fan L, et al. Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection. Talanta, 2019, 205:120021.
doi: 10.1016/j.talanta.2019.06.021
[44] Lin B X, Zhang T Y, Xin X L, et al. Europium(III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchimica Acta, 2019, 186(7):1-10.
doi: 10.1007/s00604-018-3127-5
[45] Chen M, Mu L X, Wang S, et al. A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron. ACS Chemical Neuroscience, 2020, 11(9):1283-1290.
doi: 10.1021/acschemneuro.0c00041 pmid: 32293869
[46] Mu L, Shi W, Chang J C, et al. Silicon nanowires-based fluorescence sensor for Cu(II). Nano Letters, 2008, 8(1):104-109.
doi: 10.1021/nl072164k
[47] Li Z, Xu Y Q, Xu H D, et al. A dicyanomethylene-4H-pyran-based fluorescence probe with high selectivity and sensitivity for detecting copper (II) and its bioimaging in living cells and tissue. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 244:118819.
doi: 10.1016/j.saa.2020.118819
[48] Wu Y S, Li C Y, Li Y F, et al. Development of a simple pyrene-based ratiometric fluorescent chemosensor for copper ion in living cells. Sensors and Actuators B: Chemical, 2016, 222:1226-1232.
doi: 10.1016/j.snb.2015.06.151
[49] Guo X R, Huang J Z, Wei Y B, et al. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. Journal of Hazardous Materials, 2020, 381:120969.
doi: 10.1016/j.jhazmat.2019.120969
[50] Liu Y, Ouyang Q, Li H H, et al. Turn-on fluoresence sensor for Hg2+ in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66(24):6188-6195.
doi: 10.1021/acs.jafc.8b00546
[51] Abdul Rashid J I, Abdullah J, Yusof N A, et al. The development of silicon nanowire as sensing material and its applications. Journal of Nanomaterials, 2013, 2013:1-16.
[52] Han S W, Lee S, Hong J, et al. Mutiscale substrates based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays. Biosensors and Bioelectronics, 2013, 45:129-135.
doi: 10.1016/j.bios.2013.01.062
[53] Wang H M, Mu L X, She G W, et al. Fluorescent biosensor for alkaline phosphatase based on fluorescein derivatives modified silicon nanowires. Sensors and Actuators B: Chemical, 2014, 203:774-781.
doi: 10.1016/j.snb.2014.07.047
[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[3] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[4] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[5] 李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.
[6] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[7] 温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.
[8] 王萍, 毛红菊. 纳米材料在生物医学检测中的应用[J]. 中国生物工程杂志, 2011, 31(9): 88-95.
[9] 邓汉超, 尹长城, 刘国振, 林健荣, 邓平建. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(01): 86-95.
[10] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.
[11] 尹娟,袁兴中,汤琳. 生物传感器检测纤维素酶活性及基因表达的研究进展[J]. 中国生物工程杂志, 2009, 29(01): 86-92.
[12] 欧惠超,姜浩,周宏敏,李磊珂,白林静,宋存先,罗昭锋. 五种SPR传感芯片的再生制备及其应用[J]. 中国生物工程杂志, 2009, 29(01): 44-49.
[13] 韩雪清,杨泽晓,林祥梅. 极具有应用前景的生物学检测技术-生物传感器[J]. 中国生物工程杂志, 2008, 28(5): 141-147.
[14] 李雪玲 方志俊 黄明辉 曹慧敏 赵建龙 杨梦苏. 一种葡聚糖芯片的再生方法、表征及其应用*[J]. 中国生物工程杂志, 2007, 27(8): 59-62.
[15] 武宝利, 张国梅, 高春光, 双少敏. 生物传感器的应用研究进展[J]. 中国生物工程杂志, 2004, 24(7): 65-69.