Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 89-99    DOI: 10.13523/j.cb.2104035
综述     
黄素介导的胞外电子转移研究与工程改造*
李媛媛,李妍,曹英秀(),宋浩
天津大学化工学院/合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300072
Research and Strategies of Flavins-mediated Extracellular Electron Transfer
LI Yuan-yuan,LI Yan,CAO Ying-xiu(),SONG Hao
School of Chemical Engineering and Technology,Tianjin University,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education),Tianjin 300072,China
 全文: PDF(1848 KB)   HTML
摘要:

产电微生物的胞外电子转移在能源、环境等诸多领域有着非常重要的应用价值。希瓦氏菌(Shewanella oneidensis)作为模式产电微生物,其电催化系统引起了广泛的研究。黄素作为S. oneidensis重要的电子载体,其介导的胞外电子转移是电子传递过程中的一个限速步骤。然而自然环境中野生型S. oneidensis的黄素分泌量极低,对其工程改造也存在一定的局限性,因而严重阻碍了胞外电子的传递过程,这已成为限制其电子转移的主要瓶颈。基于S. oneidensis黄素介导的电子转移机制,系统地从黄素的合成路径及转录调控的角度阐明了黄素合成的调控因素,并综述近年来利用代谢工程、合成生物学以及电极材料修饰等方法来提高黄素介导电子转移的工程化策略,未来可利用一些系统的研究方法和表达工具来加速产电微生物黄素介导的胞外电子转移。

关键词: S. oneidensis核黄素细胞色素胞外电子转移代谢工程    
Abstract:

Extracellular electron transfer is the process that electroactive microorganisms (EAMs) acquire energy from the environment by extending respiratory chains to external electron acceptors. Organism Shewanella oneidensis is widely used as a model to study emerging bioelectrochemical technologies, including microbial fuel cell (MFC), microbial electrosynthesis, as well as pollutant degradation in bioremediation. A previous study reported that almost all electrons generated by S. oneidensis were transmitted into acceptors relying on flavins, including flavin mononucleotide (FMN) and riboflavin (RF). What’s more, flavins-mediated extracellular electron transfer is the rate-limiting step in the process of electron transmission. However, flavins secreted by wild-type S. oneidensis are negligible, and the engineering modifications for S. oneidensis are limited, both of which seriously hinder the electrons transfer process, and enable the main bottleneck of restricting the electrons transmission. In this study, the regulatory factors of flavin synthesis were systematically demonstrated from the perspective of flavin biosynthesis and transcriptional regulation relying on the mechanisms of flavins-mediated electron transfer in S. oneidensis. Besides, the strategies utilizing metabolic engineering, synthetic biology and modification of electrode materials for improving flavins-mediated electron transfer in recent years were summarized. Further, it can be proposed that in the future, systematic research and expression tools can be utilized to accelerate the flavins-mediated extracellular electron transfer in EAMs.

Key words: S.oneidensis    Riboflavin    Cytochrome    Extracellular electron transfer    Metabolic engineering
收稿日期: 2021-04-21 出版日期: 2021-11-08
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2018YFA0901300);天津市青年人才托举工程(TJSQNTJ-2018-16)
通讯作者: 曹英秀     E-mail: caoyingxiu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李媛媛
李妍
曹英秀
宋浩

引用本文:

李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.

LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer. China Biotechnology, 2021, 41(10): 89-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104035        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/89

图1  希瓦氏菌的胞外电子转移机制
图2  黄素在胞外电子传递过程中的角色
图3  黄素与细胞色素之间的相互作用
图4  黄素的结构
图5  希瓦氏菌中黄素的从头合成路径
图6  增强黄素合成的工程策略
图7  混菌生态系统的构建
[1] Beblawy S, Bursac T, Paquete C, et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Molecular Microbiology, 2018, 109(5): 571-583.
doi: 10.1111/mmi.2018.109.issue-5
[2] Chong G W, Karbelkar A A, El-Naggar M Y. Nature’s conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion. Current Opinion in Chemical Biology, 2018, 47: 7-17.
doi: 10.1016/j.cbpa.2018.06.007
[3] Light S H, Su L, Rivera-Lugo R, et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018, 562(7725): 140-144.
doi: 10.1038/s41586-018-0498-z
[4] Yang Y, Wu Y C, Hu Y D, et al. Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell. ACS Catalysis, 2015, 5(11): 6937-6945.
doi: 10.1021/acscatal.5b01733
[5] Lin T, Ding W Q, Sun L M, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy, 2018, 50: 639-648.
doi: 10.1016/j.nanoen.2018.05.072
[6] Lovley D R. Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 2006, 4(7): 497-508.
pmid: 16778836
[7] Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nature Reviews Microbiology, 2010, 8(10): 706-716.
doi: 10.1038/nrmicro2422
[8] Lu X, Liu Y R, Johs A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis bem. Environmental Science & Technology, 2016, 50(8): 4366-4373.
doi: 10.1021/acs.est.6b00401
[9] Yang Y, Ding Y Z, Hu Y D, et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synthetic Biology, 2015, 4(7): 815-823.
doi: 10.1021/sb500331x pmid: 25621739
[10] Torres C I, Marcus A K, Lee H S, et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 2010, 34(1): 3-17.
doi: 10.1111/j.1574-6976.2009.00191.x pmid: 19895647
[11] Okamoto A, Nakamura R, Nealson K H, et al. Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem, 2014, 1(11): 1808-1812.
doi: 10.1002/celc.v1.11
[12] Sydow A, Krieg T, Mayer F, et al. Electroactive bacteria-molecular mechanisms and genetic tools. Applied Microbiology and Biotechnology, 2014, 98(20): 8481-8495.
doi: 10.1007/s00253-014-6005-z pmid: 25139447
[13] Watanabe K, Manefield M, Lee M, et al. Electron shuttles in biotechnology. Current Opinion in Biotechnology, 2009, 20(6): 633-641.
doi: 10.1016/j.copbio.2009.09.006 pmid: 19833503
[14] Zhao J T, Li F, Cao Y X, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 2020: 107682.DOI: 10.1016/j.biotechadv.2020.107682.
doi: 10.1016/j.biotechadv.2020.107682
[15] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer. PNAS, 2008, 105(10): 3968-3973.
doi: 10.1073/pnas.0710525105 pmid: 18316736
[16] White G F, Edwards M J, Gomez-Perez L, et al. Mechanisms of bacterial extracellular electron exchange. Advances in Microbial Physiology, 2016, 68: 87-138.
doi: 10.1016/bs.ampbs.2016.02.002 pmid: 27134022
[17] Gorby Y A, Yanina S McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS, 2006, 103(30): 11358-11363.
pmid: 16849424
[18] Pirbadian S, Barchinger S E, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. PNAS, 2014, 111(35): 12883-12888.
doi: 10.1073/pnas.1410551111 pmid: 25143589
[19] Lovley D R, Walker D J F. Geobacter protein nanowires. Frontiers in Microbiology, 2019, 10: 2078.
doi: 10.3389/fmicb.2019.02078 pmid: 31608018
[20] Covington E D, Gelbmann C B, Kotloski N J, et al. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Molecular Microbiology, 2010, 78(2): 519-532.
doi: 10.1111/mmi.2010.78.issue-2
[21] Okamoto A, Kalathil S, Deng X, et al. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Scientific Reports, 2014, 4: 5628.
doi: 10.1038/srep05628
[22] Huang L Y, Tang J H, Chen M, et al. Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens. Frontiers in Microbiology, 2018, 9: 2886.
doi: 10.3389/fmicb.2018.02886
[23] Okamoto A, Hashimoto K, Nealson K H. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer. Angewandte Chemie (International Ed in English), 2014, 53(41): 10988-10991.
doi: 10.1002/anie.201407004
[24] Xu S, Jangir Y, El-Naggar M Y. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochimica Acta, 2016, 198: 49-55.
doi: 10.1016/j.electacta.2016.03.074
[25] Babanova S, Matanovic I, Cornejo J, et al. Outer membrane cytochromes/flavin interactions in Shewanella spp.-A molecular perspective. Biointerphases, 2017, 12(2): 021004.
doi: 10.1116/1.4984007
[26] Liu S, Diao N, Wang Z W, et al. Modular engineering of the flavin pathway in Escherichia coli for improved flavin mononucleotide and flavin adenine dinucleotide production. Journal of Agricultural and Food Chemistry, 2019, 67(23): 6532-6540.
doi: 10.1021/acs.jafc.9b02646
[27] Liu S, Hu W Y, Wang Z W, et al. Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 2020, 19: 31.
doi: 10.1186/s12934-020-01302-7
[28] Xu F, Song X N, Sheng G P, et al. Sunlight-mediated degradation of methyl orange sensitized by riboflavin: roles of reactive oxygen species. Separation and Purification Technology, 2015, 142: 18-24.
doi: 10.1016/j.seppur.2014.12.031
[29] Wang G L, Shi T, Chen T, et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metabolic Engineering, 2018, 48: 138-149.
doi: 10.1016/j.ymben.2018.05.022
[30] Wang G L, Bai L, Wang Z W, et al. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2014, 30(6): 1893-1900.
doi: 10.1007/s11274-014-1611-6
[31] Cao Y X, Song M Y, Li F, et al. A synthetic plasmid toolkit for Shewanella oneidensis MR-1. Frontiers in Microbiology, 2019, 10: 410.
doi: 10.3389/fmicb.2019.00410
[32] Zhu Y B, Chen X, Chen T, et al. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis. Biotechnology Letters, 2006, 28(20): 1667-1672.
doi: 10.1007/s10529-006-9143-2
[33] Lin Z Q, Xu Z B, Li Y F, et al. Metabolic engineering of Escherichia coli for the production of riboflavin. Microbial Cell Factories, 2014, 13(1): 1-12.
doi: 10.1186/1475-2859-13-1
[34] Bacher A, Eberhardt S, Fischer M, et al. Biosynthesis of vitaminb2(riboflavin). Annual Review of Nutrition, 2000, 20: 153-167.
pmid: 10940330
[35] Shi S B, Shen Z, Chen X, et al. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochemical Engineering Journal, 2009, 46(1): 28-33.
doi: 10.1016/j.bej.2009.04.008
[36] Xu Z B, Lin Z Q, Wang Z W, et al. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chinese Journal of Chemical Engineering, 2015, 23(11): 1834-1839.
doi: 10.1016/j.cjche.2015.08.013
[37] Kato T, Park E Y. Expression of alanine: glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii. Applied Microbiology and Biotechnology, 2006, 71(1): 46-52.
doi: 10.1007/s00253-005-0124-5
[38] García-Angulo V A. Overlapping riboflavin supply pathways in bacteria. Critical Reviews in Microbiology, 2017, 43(2): 196-209.
doi: 10.1080/1040841X.2016.1192578 pmid: 27822970
[39] Dmytruk K V, Yatsyshyn V Y, Sybirna N O, et al. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metabolic Engineering, 2011, 13(1): 82-88.
doi: 10.1016/j.ymben.2010.10.005
[40] Hou Y, Hossain G S, Li J H, et al. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids. Biotechnology and Bioengineering, 2017, 114(9): 1928-1936.
doi: 10.1002/bit.v114.9
[41] Serrano A, Sebastián M, Arilla-Luna S, et al. The trimer interface in the quaternary structure of the bifunctional prokaryotic FAD synthetase from Corynebacterium ammoniagenes. Scientific Reports, 2017, 7: 404.
doi: 10.1038/s41598-017-00402-6 pmid: 28341845
[42] Pedrolli D, Langer S, Hobl B, et al. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. The FEBS Journal, 2015, 282(16): 3230-3242.
doi: 10.1111/febs.13226
[43] Boumezbeur A H, Bruer M, Stoecklin G, et al. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Metabolic Engineering, 2020, 61: 58-68.
doi: 10.1016/j.ymben.2020.05.002
[44] Takemoto N, Tanaka Y, Inui M, et al. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2014, 98(9): 4159-4168.
doi: 10.1007/s00253-014-5570-5
[45] Shi T, Wang Y C, Wang Z W, et al. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microbial Cell Factories, 2014, 13: 101.
[46] Wu C, Cheng Y Y, Li B B, et al. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresource Technology, 2013, 136: 711-714.
doi: 10.1016/j.biortech.2013.02.072
[47] Min D, Cheng L, Zhang F, et al. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environmental Science & Technology, 2017, 51(9): 5082-5089.
doi: 10.1021/acs.est.6b04640
[48] McAnulty M J, Wood T K. YeeO from Escherichia coli exports flavins. Bioengineered, 2014, 5(6): 386-392.
doi: 10.4161/21655979.2014.969173 pmid: 25482085
[49] Yong Y C, Yu Y Y, Yang Y, et al. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Biotechnology and Bioengineering, 2013, 110(2): 408-416.
doi: 10.1002/bit.24732 pmid: 23007598
[50] Liu T, Yu Y Y, Chen T, et al. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity. Biotechnology and Bioengineering, 2017, 114(3): 526-532.
doi: 10.1002/bit.26094
[51] Liu Y, Ding M Z, Ling W, et al. A three-species microbial consortium for power generation. Energy & Environmental Science, 2017, 10(7): 1600-1609.
[52] Wang Q Q, Wu X Y, Yu Y Y, et al. Facile in situ fabrication of graphene/riboflavin electrode for microbial fuel cells. Electrochimica Acta, 2017, 232: 439-444.
doi: 10.1016/j.electacta.2017.03.008
[53] Xu H D, Quan X C. Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells. International Journal of Hydrogen Energy, 2016, 41(3): 1966-1973.
doi: 10.1016/j.ijhydene.2015.11.124
[54] Zou L, Wu X, Huang Y H, et al. Promoting Shewanella bidirectional extracellular electron transfer for bioelectrocatalysis by electropolymerized riboflavin interface on carbon electrode. Frontiers in Microbiology, 2019, 9: 3293.
doi: 10.3389/fmicb.2018.03293
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[4] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[5] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[6] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[7] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[8] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[9] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[10] 张宸, 陈韶华, 吴文倩, 周建芹. 微生物谷氨酰胺转氨酶催化细胞色素c赖氨酸残基的定点修饰[J]. 中国生物工程杂志, 2017, 37(9): 82-88.
[11] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[12] 王明轩, 陈海琴, 顾震南, 陈卫, 陈永泉. 高山被孢霉中Δ9脂肪酸脱饱和酶的表达、纯化和其细胞色素b5功能域的鉴定[J]. 中国生物工程杂志, 2017, 37(3): 43-50.
[13] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.
[14] 李晓波, 刘雪, 赵广荣. 微生物合成黄酮糖苷类天然产物研究进展[J]. 中国生物工程杂志, 2016, 36(8): 105-112.
[15] 高翠娟, 连思琪, 祁庆生. 代谢工程构建重组耶氏解脂酵母生产中长链聚羟基脂肪酸酯[J]. 中国生物工程杂志, 2016, 36(5): 53-58.