Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 67-74    DOI: 10.13523/j.cb.2105006
综述     
基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*
徐文娟1,宋丹1,陈丹1,龙辉2,陈禹保3,龙峰1,**()
1 中国人民大学环境学院 北京 100875
2 广西壮族自治区产品质量检验研究院 南宁 530200
3 中国医学科学院医学实验动物研究所 北京 100021
Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor
XU Wen-juan1,SONG Dan1,CHEN Dan1,LONG Hui2,CHEN Yu-bao3,LONG Feng1,**()
1 School of Environmental & Natural Resources, Renmin University, Beijing 100875, China
2 Institute of Product Quality Inspection, Guangxi Zhuang Autonomous Region, Nanning 530007, China
3 Institute of Laboratory Animal Sciences, Beijing 100021, China
 全文: PDF(1043 KB)   HTML
摘要:

病原菌的快速准确检测是实现疫情高效防控、疾病精准治疗、污染环境及时处置的关键。而现有的病原菌现场快速检测技术,主要以定性分析为主,假阳性/假阴性受到诟病,检测准确性仍有待提升,亟待发展基于新原理、新方法的病原菌快速检测技术。基于CRISPR(clustered regularly interspaced short palindromic repeats)的生物传感技术因具有高灵活性(对不同的基因靶点只需改变crRNA序列)、高特异性(单碱基分辨)、高灵敏(优于10-18 mol/L浓度)、可编程、可模块化、低成本、可在各种体外介质中高效稳定运行等独特优势,打破了传统分子诊断与检测技术的局限性,正在成为下一代病原菌检测技术的引领者。在该技术中,Cas效应蛋白被用作高特异性的序列识别元件,结合不同的生物传感机制,即可用于病原菌的高特异性快速灵敏检测。在总结CRISPR/Cas生物传感技术原理的基础上,综述了用于病原菌检测的CRISPR/Cas12和CRISPR/Cas13生物传感技术研究进展。通过阐述CRISPR/Cas生物传感技术在实际应用中面临的挑战,展望其未来的发展前景。

关键词: 病原菌规律间隔成簇短回文重复序列生物传感器脱氧核糖核酸核糖核酸    
Abstract:

Rapid and accurate detection of pathogens is essential to achieve efficient epidemic prevention and control, accurate treatment of diseases, and timely disposal of polluted environment. However, the existing on-site rapid detection methods of pathogenic bacteria mainly focuses on qualitative analysis. False positive/negative results exist and their detection accuracy still needs to be improved. It is urgent to develop rapid detection technologies of pathogenic bacteria by taking use of new principles and methods. The CRISPR (clustered regularly interspaced short palindromic repeats) based biosensors have several unique advantages, such as high flexibility (only needing to change the crRNA sequence for different target genes), high specificity (single base resolution), high sensitivity (better than 10-18 mol/L concentration), programmability, modularity, low cost, and high efficiency and stability in various in vitro media. It has become the leader of the next generation of pathogen detection technologies without the limitations of traditional molecular diagnosis and detection technologies. In this technology, Cas effector proteins are used as highly specific sequence recognition elements. Through combined with various biosensor mechanisms, they can be used for rapid and sensitive detection of pathogens with high specificity. After summarizing the principle of the CRISPR/Cas biosensor technology, the research progress of the CRISPR/Cas12 and CRISPR/Cas13 biosensor technologies for pathogen detection was reviewed. The challenges of the CRISPR/Cas biosensor technology in practical application are discussed, and its future developments are prospected.

Key words: Pathogenic bacteria    Clustered regularly interspaced short palindromic repeats    Biosensor    DNA RNA
收稿日期: 2021-05-06 出版日期: 2021-08-31
ZTFLH:  Q812  
基金资助: * 国家自然科学基金资助项目(21077063)
通讯作者: 龙峰     E-mail: longf04@ruc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐文娟
宋丹
陈丹
龙辉
陈禹保
龙峰

引用本文:

徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.

XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor. China Biotechnology, 2021, 41(8): 67-74.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105006        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/67

图1  基于不同效应蛋白的CRISPR/Cas生物传感原理示意图[3]
Cas 12
类型
病原菌 核酸 系统名 信号放大方式 灵敏度 检测方式 检测时间 样品
处理
参考
文献
Cas12a SARS-CoV-2 RNA OR-SHERLOCK RT-RPA 2.5 copies/μL 荧光检测 50 min 需要 [25]
SARS-CoV-2 RNA CRISPR-Cas12a LAMP 20 copies/μL 裸眼 40 min [26]
SARS-CoV-2 RNA CRISPR-Cas12a RPA 约5 copies/μL 裸眼 20 min - [8]
SARS-CoV-2 RNA CODA RT-RPA 3 copies/μL 荧光检测 20 min [27]
SARS-CoV-2 RNA opvCRISPR RT-LAMP 5 copies 裸眼 45 min [28]
SARS-CoV-2 RNA CRISPR-FDS RT-RPA 5 copies 荧光检测 50 min [29]
人乳头瘤病毒16型
(HPV16)和细小
病毒B19型(PB19)
DNA E-CRISPR - 1 pmol/L 电化学 30 min 需要 [30]
乙型脑炎病毒(JVE)
和伪狂犬病毒
(PRV)
DNA/
RNA
HOLMES PCR 10 amol/L 荧光检测 1 h 需要 [20]
疟原虫(Plasmodium) DNA SHERLOCK+
CRISPR
RPA 5 amol/L 荧光检测 1 h 需要 [31]
甲型和乙型流感病毒
(Influenza A and B virus)
RNA CRISPR-Cas12a RT-RPA+RT-
LAMP
1×100 PFUs 荧光检测/
侧向流动检测
约1.5 h 需要 [32]
非洲猪瘟(ASF) DNA CRISPR-Cas12a PCR/LAMP 2 copies/μL 裸眼 40 min 需要 [33]
SARS-CoV-2 RNA ENHANCE RT-LAMP N基因0.2
copies/μL,E
因7.9 copies/μL
荧光检测/
侧向流动检测
30 min 需要 [34]
SARS-CoV-2 RNA RT-LAMP+
Cas12a
RT-LAMP 20 copies/μL 侧向流动检测 <40 min 需要 [16]
SARS-CoV-2 RNA CRISPR Cas12a RT-RAA 10 copies/μL 裸眼 <45 min 需要 [35]
非洲猪瘟(ASF) DNA CORDS RAA 1 fmol/L 荧光检测/
侧向流动检测
1 h 需要 [36]
非洲猪瘟(ASF) DNA POC RPA/LAMP 100 fmol/L 荧光检测 <2 h 需要 [37]
非洲猪瘟(ASF) DNA CRISPR Cas
colorimetric
RPA 200 copies/μL 裸眼 <1 h 需要 [38]
伪狂犬病毒(PRV) RNA HOLMES RT-PCR 1~10 amol/L 荧光检测 约1 h 需要 [39]
金黄色葡萄球菌
(Staphylococcus aureus)
DNA CRISPR/Cas12a+
logic gates
PCR 103 CFU/mL 荧光检测 2 h 需要 [40]
Cas 12
类型
病原菌 核酸 系统名 信号放大方式 灵敏度 检测方式 检测时间 样品
处理
参考
文献
人乳头瘤病毒16/18型
(HPV16/18)
DNA DETECTR RPA 10 pmol/L 荧光检测 1 h 需要 [19]
SARS-CoV-2/艾滋
病1型(HIV-1)
RNA AIOD-CRISPR RPA 11 copies/μL 荧光检测/
裸眼
20 min - [41]
SARS-CoV-2 RNA STOPCovid RT-LAMP 100 copies 荧光检测/
侧向流动检测
55 min/
95 min
需要 [42]
Cas12b 乙型脑炎病毒(JVE) DNA/
RNA
HOLMESv2 LAMP 10 amol/L 荧光检测 1 h - [22]
SARS-CoV-2 RNA CASdetec RT-RAA 1×104 copies/mL 裸眼 约50 min 需要 [43]
人乳头瘤病毒16/18型
(HPV16/18)
DNA CDetection RPA 1 amol/L 荧光检测 约3 h 需要 [39]
表1  基于CRISPR/Cas12的病原菌检测技术比较
Cas 13
类型
病原菌 核酸 系统名 信号放大方式 灵敏度 检测方式 检测
时间
样品
处理
参考
文献
Cas 13a 蜡状芽孢杆菌
(Bacillus cereus)
RNA Light-up RNA
aptamer signaling-
CRISPR-Cas13a
- 10 CFU 荧光检测 20 min 需要 [47]
寨卡病毒(Zika)和登革
热病毒(Dengue virus)
RNA CRISPR-Dx RT-RPA 1.25 copies/μL 荧光检测 约20 min 需要 [12]
埃博拉病毒(Ebola virus) RNA SHERLOCK - 20 pfu/μL 荧光检测 <1 h 需要 [48]
新冠病毒(SARS-CoV-2) RNA CRISPR-Cas13a - 100 copies/μL 手机相机 30 min - [49]
RNA SHINE RPA 10 copies/μL 手机软件 <1 h 需要 [50]
寨卡病毒(Zika)或登革
热病毒(Dengue virus)
RNA SHERLOCK LAMP 2 amol/L 荧光检测/
侧向流动检测
0.5~3h 需要 [11]
金黄色葡萄球菌
(Staphylococcus aureus)
DNA CCB-Detection PCR 1 amol/L 荧光检测 <4 h 需要 [51]
H7N9型禽流感 RNA CRISPR-Cas13a RT-RPA 1 fmol/L 荧光检测 50min 需要 [52]
犬细小病毒2型(CPV-2) DNA SHERLOCK RPA 100 amol/L 荧光检测 <0.5h 需要 [53]
寨卡病毒(Zika)和登革
热病毒(Dengue virus)
RNA HUDSON+
SHERLOCK
RT-RPA 1 copies/μL 荧光检测/
侧向流动检测
<1 h [23]
人类疱疹病毒(EBV) DNA SHERLOCK RPA 8 copies qPCR装置 <2 h 需要 [54]
埃博拉病毒(Ebola virus) RNA CRISPR-Cas13a RT-PCR 20 pfu / mL 荧光检测 <5 min 需要 [48]
淋巴细胞性脉络膜脑膜
炎病毒(LCMV)
RNA SHERLOCK RT-RPA amol/L 荧光检测 约2h 需要 [55]
蓝耳病病毒(PRRSV) RNA CRISPR-Cas13a RT-RPA 172 copies/μL 荧光检测/
侧向流动检测
1~3 h 均可 [56]
副溶血性弧菌(Vibrio
parahemolyticus)
DNA CRISPR-Cas13a RAA 10 copies/反应 荧光检测 1 h 需要 [57]
埃博拉病毒(Ebola virus)
和拉萨病毒(Lassa virus)
RNA SHERLOCK+
SUDSON
RPA 10 copies /μL 荧光检测 1~3 h [58]
Cas 13b 甲型流感病毒(IAV)和
水泡性口炎病毒(VSV)
RNA SHERLOCK RT-RPA amol/L 荧光检测 约2h 需要 [55]
表2  基于CRISPR/Cas13的病原菌检测技术比较
[1] Yoo S M, Lee S Y. Optical biosensors for the detection of pathogenic microorganisms. Trends in Biotechnology, 2016, 34(1):7-25.
doi: 10.1016/j.tibtech.2015.09.012
[2] Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 2012, 380(9859):2095-2128.
doi: 10.1016/S0140-6736(12)61728-0
[3] Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/cas biosensing technologies. ACS Synthetic Biology, 2020, 9(6):1226-1233.
doi: 10.1021/acssynbio.9b00507
[4] Chen J H, Andler S M, Goddard J M, et al. Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews, 2017, 46(5):1272-1283.
doi: 10.1039/C6CS00313C
[5] Fournier P E, Drancourt M, Colson P, et al. Modern clinical microbiology: new challenges and solutions. Nature Reviews Microbiology, 2013, 11(8):574-585.
doi: 10.1038/nrmicro3068
[6] Etayash H, Khan M F, Kaur K, et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nature Communications, 2016, 7:12947.
doi: 10.1038/ncomms12947 pmid: 27698375
[7] Xu H, Xia A Y, Wang D D, et al. An ultraportable and versatile point-of-care DNA testing platform. Science Advances, 2020, 6(17):eaaz7445.
[8] Ding X, Yin K, Li Z Y, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nature Communications, 2020, 11:4711.
doi: 10.1038/s41467-020-18575-6
[9] Li Y, Li S Y, Wang J, et al. CRISPR/cas systems towards next-generation biosensing. Trends in Biotechnology, 2019, 37(7):730-743.
doi: 10.1016/j.tibtech.2018.12.005
[10] Harrington L B, Burstein D, Chen J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362(6416):839-842.
doi: 10.1126/science.aav4294 pmid: 30337455
[11] Gootenberg J S, Abudayyeh O O, Kellner M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, 360(6387):439-444.
doi: 10.1126/science.aaq0179 pmid: 29449508
[12] Gootenberg J S, Abudayyeh O O, Lee J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336):438-442.
doi: 10.1126/science.aam9321 pmid: 28408723
[13] Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell, 2015, 163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[14] Kellner M J, Koob J G, Gootenberg J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols, 2019, 14(10):2986-3012.
doi: 10.1038/s41596-019-0210-2 pmid: 31548639
[15] Rath D, Amlinger L, Rath A, et al. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 2015, 117:119-128.
doi: 10.1016/j.biochi.2015.03.025
[16] Broughton J P, Deng X D, Yu G X, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology, 2020, 38(7):870-874.
doi: 10.1038/s41587-020-0513-4 pmid: 32300245
[17] Watters K E, Fellmann C, Bai H B, et al. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science, 2018, 362(6411):236-239.
doi: 10.1126/science.aau5138 pmid: 30190307
[18] Dong D, Ren K, Qiu X L, et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature, 2016, 532(7600):522-526.
doi: 10.1038/nature17944
[19] Chen J S, Ma E B, Harrington L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387):436-439.
doi: 10.1126/science.aar6245
[20] Li S Y, Cheng Q X, Wang J M, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, 4:20.
doi: 10.1038/s41421-018-0028-z
[21] Wu D, Guan X Y, Zhu Y W, et al. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Cell Research, 2017, 27(5):705-708.
doi: 10.1038/cr.2017.46
[22] Li L X, Li S Y, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synthetic Biology, 2019, 8(10):2228-2237.
doi: 10.1021/acssynbio.9b00209
[23] Myhrvold C, Freije C A, Gootenberg J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360(6387):444-448.
doi: 10.1126/science.aas8836 pmid: 29700266
[24] Wang B, Wang R, Wang D Q, et al. Cas12aVDet: a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection. Analytical Chemistry, 2019, 91(19):12156-12161.
doi: 10.1021/acs.analchem.9b01526 pmid: 31460749
[25] Sun Y Y, Yu L, Liu C X, et al. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a. Journal of Translational Medicine, 2021, 19(1):1-10.
doi: 10.1186/s12967-020-02683-4
[26] Chen Y J, Shi Y, Chen Y, et al. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: a promising method in the point-of-care detection. Biosensors and Bioelectronics, 2020, 169:112642.
doi: 10.1016/j.bios.2020.112642
[27] Lee C Y, Degani I, Cheong J, et al. Fluorescence polarization system for rapid COVID-19 diagnosis. Biosensors and Bioelectronics, 2021, 178:113049.
doi: 10.1016/j.bios.2021.113049
[28] Wang R, Qian C Y, Pang Y N, et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-CoV-2 detection. Biosensors and Bioelectronics, 2021, 172:112766.
doi: 10.1016/j.bios.2020.112766
[29] Huang Z, Tian D, Liu Y, et al. Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosensors and Bioelectronics, 2020, 164:112316.
doi: S0956-5663(20)30311-0 pmid: 32553350
[30] Dai Y F, Somoza R A, Wang L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angewandte Chemie, 2019, 131(48):17560-17566.
doi: 10.1002/ange.v131.48
[31] Lee R, de Puig Guixe H, Dvorin J, et al. 1832. development of an ultrasensitive field-applicable Plasmodium falciparum assay for malaria diagnosis and eradication. Open Forum Infectious Diseases, 2019, 6(Supplement_2):S42-S43.
[32] Park B J, Park M S, Lee J M, et al. Specific detection of influenza A and B viruses by CRISPR-Cas12a-based assay. Biosensors, 2021, 11(3):88.
doi: 10.3390/bios11030088
[33] Tao D G, Liu J J, Nie X W, et al. Application of CRISPR-Cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the sensitive detection of African swine fever virus. ACS Synthetic Biology, 2020, 9(9):2339-2350.
doi: 10.1021/acssynbio.0c00057
[34] Nguyen L T, Rananaware S R, Pizzano B L M, et al. Engineered CRISPR/cas12a enables rapid SARS-CoV-2 detection. medRxiv, 2020. DOI: 10.1101/2020.12.23.20248725.
doi: 10.1101/2020.12.23.20248725
[35] Wang X J, Zhong M T, Liu Y, et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Science Bulletin, 2020, 65(17):1436-1439.
doi: 10.1016/j.scib.2020.04.041
[36] Bai J, Lin H S, Li H J, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever. Frontiers in Microbiology, 2019, 10:2830.
doi: 10.3389/fmicb.2019.02830
[37] He Q, Yu D M, Bao M D, et al. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosensors and Bioelectronics, 2020, 154:112068.
doi: 10.1016/j.bios.2020.112068
[38] Yuan C, Tian T, Sun J, et al. Universal and naked-eye gene detection platform based on CRISPR/Cas12a/13a System. Analytical Chemistry, 2020, 92(5):4029-4037.
doi: 10.1021/acs.analchem.9b05597
[39] Teng F, Guo L, Cui T T, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biology, 2019, 20(1):1-7.
doi: 10.1186/s13059-018-1612-0
[40] Peng L, Zhou J, Yin L J, et al. Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes. Analytica Chimica Acta, 2020, 1125:162-168.
doi: S0003-2670(20)30542-0 pmid: 32674762
[41] Ding X, Yin K, Li Z Y, et al. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. bioRxiv, 2020. DOI: 10.1101/2020.03.19.998724.
doi: 10.1101/2020.03.19.998724
[42] Joung J, Ladha A, Saito M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. The New England Journal of Medicine, 2020, 383(15):1492-1494.
doi: 10.1056/NEJMc2026172
[43] Guo L, Sun X H, Wang X G, et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discovery, 2020, 6(1):34.
doi: 10.1038/s41421-020-0174-y pmid: 32435508
[44] Liu L, Li X Y, Ma J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell, 2017, 170(4):714-726.e10.
doi: 10.1016/j.cell.2017.06.050
[45] East-Seletsky A, O'Connell M R, Knight S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 2016, 538(7624):270-273.
doi: 10.1038/nature19802
[46] Yang L, Chen L L. Enhancing the RNA engineering toolkit. Science, 2017, 358(6366):996-997.
doi: 10.1126/science.aar2400 pmid: 29170221
[47] Zhang T, Zhou W H, Lin X Y, et al. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria. Biosensors and Bioelectronics, 2021, 176:112906.
doi: 10.1016/j.bios.2020.112906 pmid: 33342694
[48] Qin P W, Park M, Alfson K J, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sensors, 2019, 4(4):1048-1054.
doi: 10.1021/acssensors.9b00239
[49] Fozouni P, Son S, Díaz de León Derby M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184(2):323-333.e9.
doi: 10.1016/j.cell.2020.12.001
[50] Arizti-Sanz J, Freije C A, Stanton A C, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications, 2020, 11:5921.
doi: 10.1038/s41467-020-19097-x pmid: 33219225
[51] Zhou J, Yin L J, Dong Y N, et al. CRISPR-Cas13a based bacterial detection platform: Sensing pathogen Staphylococcus aureus in food samples. Analytica Chimica Acta, 2020, 1127:225-233.
doi: S0003-2670(20)30689-9 pmid: 32800128
[52] Liu Y F, Xu H P, Liu C, et al. CRISPR-Cas13a nanomachine based simple technology for avian influenza A (H7N9) virus on-site detection. Journal of Biomedical Nanotechnology, 2019, 15(4):790-798.
doi: 10.1166/jbn.2019.2742
[53] Khan H, Khan A, Liu Y F, et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2. Chinese Chemical Letters, 2019, 30(12):2201-2204.
doi: 10.1016/j.cclet.2019.10.032
[54] Wu Y T, Liu S X, Wang F, et al. Room temperature detection of plasma Epstein-Barr virus DNA with CRISPR-Cas13. Clinical Chemistry, 2019, 65(4):591-592.
doi: 10.1373/clinchem.2018.299347
[55] Freije C A, Myhrvold C, Boehm C K, et al. Programmable inhibition and detection of RNA viruses using Cas13. Molecular Cell, 2019, 76(5):826-837.e11.
doi: 10.1016/j.molcel.2019.09.013
[56] Chang Y F, Deng Y, Li T, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a. Transboundary and Emerging Diseases, 2020, 67(2):564-571.
doi: 10.1111/tbed.v67.2
[57] 葛以跃, 苏璇, 张倩, 等. CRISPR-Cas13a结合重组酶介导的扩增快速检测副溶血性弧菌方法的建立. 现代预防医学, 2019, 46(20):3777-3781.
Ge Y Y, Su X, Zhang Q, et al. Rapid detection of Vibrio parahaemolyticus by CRISPR-Cas13a combined with recombinase aided amplification(RAA). Modern Preventive Medicine, 2019, 46(20):3777-3781.
[58] Barnes K G, Lachenauer A E, Nitido A, et al. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nature Communications, 2020, 11:4131.
doi: 10.1038/s41467-020-17994-9 pmid: 32807807
[1] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[2] 周紫卉,刘晓娴,黄昊,肖瑞,祁克宗,王升启. 基于纳米信号标签的表面增强拉曼散射在病原菌检测中的应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 70-77.
[3] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[4] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[5] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[6] 李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.
[7] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[8] 温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.
[9] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[10] 陶凤云, 尹雪薇, 李丹, 蒋丹, 赵伟. 中国林蛙核糖核酸酶Rdrlec新基因的原核可溶表达[J]. 中国生物工程杂志, 2013, 33(1): 27-32.
[11] 陈丰, 杨怡姝, 曾毅. 基于RNA的抗HIV-1基因治疗方法研究进展[J]. 中国生物工程杂志, 2012, 32(6): 93-97.
[12] 王建华, 权春善, 赵朋超, 范圣第. DKP对3株病原菌生物膜的抑制作用研究[J]. 中国生物工程杂志, 2011, 31(8): 61-65.
[13] 邓汉超, 尹长城, 刘国振, 林健荣, 邓平建. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(01): 86-95.
[14] 葛莹, 孙婧慧, 闫征, 王楠. 小鼠核糖核酸酶抑制剂的高效可溶性表达与氧化抗性鉴定[J]. 中国生物工程杂志, 2010, 30(11): 17-23.
[15] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.