Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 59-66    DOI: 10.13523/j.cb.2104019
综述     
长链非编码RNA相关表观遗传修饰在癌症中的进展*
杨万斌1,徐燕1,卓士铉1,王心怡1,李雅静1,郭一凡2,张正光1,郭园园1,**()
1 南京中医药大学医学院·整合医学学院 南京 210023
2 南京中医药大学药学院 南京 210023
Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer
YANG Wan-bin1,XU Yan1,ZHUO Shi-xuan1,WANG Xin-yi1,LI Ya-jing1,GUO Yi-fan2,ZHANG Zheng-guang1,GUO Yuan-yuan1,**()
1 School of Medicine & Holistic Integrative Medicine of Nanjing University of Chinese Medicine, Nanjing 210023, China
2 School of Pharmacy Nanjing University of Chinese Medicine, Nanjing 210023, China
 全文: PDF(963 KB)   HTML
摘要:

长链非编码RNA(lncRNA)是一类转录本长度大于200 nt的RNA分子,编码蛋白质的功能有限,但其功能多样且复杂。已有研究报道lncRNA与肿瘤的发展进程密切相关,lncRNA可以通过不同方式参与细胞内生物学进程的调控,是潜在的癌症调节因子,其中,调节表观遗传修饰水平是其影响癌症进程的主要手段;癌症发病过程中细胞内存在着不同程度的表观遗传修饰,其主要为包括甲基化、乙酰化、磷酸化、糖基化、泛素化等修饰方式在内的DNA修饰、RNA修饰以及蛋白质的翻译后修饰,在癌症的不同阶段其修饰的异常程度不同,从而影响肿瘤发生的生物学进程。研究表明,lncRNA可以通过自身修饰或参与其他生物大分子的表观遗传修饰进程参与癌症的发生发展。因此,回顾了lncRNA所参与的表观遗传修饰形式和lncRNA在表观遗传修饰方面所起到的作用,并概述了lncRNA通过影响表观遗传修饰水平从而调控癌症进程的方法。旨在总结癌症细胞内表观遗传修饰方面所涉及lncRNA的研究进展,为癌症诊断和治疗提供潜在的靶标和生物学标志物。

关键词: lncRNA表观遗传修饰癌症    
Abstract:

Long non-coding RNAs (lncRNAs) are generally defined as RNA transcripts of more than 200 nucleotides in length with limited protein-coding capacity; however their functions are diverse and complex. Previous studies have demonstrated that lncRNAs are closely related to cancer development and are potential cancer regulators. lncRNAs can participate in the regulation of intracellular biological processes in different ways. It is a potential cancer regulator. Among them, lncRNAs can affect cancer progression mainly through regulating the level of epigenetic modification. Epigenetic modifications exist in the cells during the pathogenesis of cancer such as DNA modification, RNA modification, and post-translational modification of proteins including methylation, acetylation, phosphorylation, glycosylation, and ubiquitination, and the degree of abnormal modifications is different at different stages of cancer. This phenomenon will affect the biological processes of tumorigenesis. Studies have shown that lncRNAs can participate in the occurrence and development of cancer through self-modification or taking part in the epigenetic modification of other biomolecules. Therefore, the epigenetic modification lncRNAs participate in and the role of lncRNAs in epigenetic modification were reviewed. This paper explores how lncRNAs affect cancer progression through regulating the level of epigenetic modification in order to summarize and analyze the research progress and provide potential targets and biomarkers for cancer diagnosis and treatment.

Key words: lncRNA    Epigenetic modification    Cancer
收稿日期: 2021-04-14 出版日期: 2021-08-31
ZTFLH:  Q522  
基金资助: * 国家自然科学基金青年项目(82004081);国家自然科学基金青年项目(82004118);江苏省自然科学基金青年基金项目(BK20180678);江苏省高等学校大学生创新训练计划资助项目(202010315XJ065)
通讯作者: 郭园园     E-mail: guoyy@njucm.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨万斌
徐燕
卓士铉
王心怡
李雅静
郭一凡
张正光
郭园园

引用本文:

杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.

YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer. China Biotechnology, 2021, 41(8): 59-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104019        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/59

[1] Chen S J, Li F Y, Xu D, et al. The function of RAS mutation in cancer and advances in its drug research. Current Pharmaceutical Design, 2019, 25(10):1105-1114.
doi: 10.2174/1381612825666190506122228
[2] 范源, 罗嘉, 甘麦邻, 等. 长链非编码RNA TERRA的研究进展. 中国生物工程杂志, 2018, 38(10):64-73.
Fan Y, Luo J, Gan M L, et al. The research advance of long non-coding RNA TERRA. China Biotechnology, 2018, 38(10):64-73.
[3] Ruiz-Orera J, Messeguer X, Subirana J A, et al. Long non-coding RNAs as a source of new peptides. eLife, 2014, 3:e03523. DOI: 10.7554/eLife.03523.
doi: 10.7554/eLife.03523
[4] Huang J Z, Chen M, Chen D, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Molecular Cell, 2017, 68(1):171-184.e6.
doi: 10.1016/j.molcel.2017.09.015
[5] 万群, 刘梦瑶, 夏菁, 等. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响. 中国生物工程杂志, 2019, 39(1):13-20.
Wan Q, Liu M Y, Xia J, et al. The effects of LncRNA SNHG3 on the proliferation, migration and invasion of human breast cancer MCF-7 cells. China Biotechnology, 2019, 39(1):13-20.
[6] Kelly A D, Issa J P J. The promise of epigenetic therapy: reprogramming the cancer epigenome. Current Opinion in Genetics & Development, 2017, 42:68-77.
[7] 堵晶晶, 谭镇东, 刘辰东, 等. 长链非编码RNA的研究现状. 中国生物工程杂志, 2016, 36(9):59-74.
Du J J, Tan Z D, Liu C D, et al. Research progress of long non-coding RNAs. China Biotechnology, 2016, 36(9):59-74.
[8] Moore L D, Le T, Fan G P. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1):23-38.
doi: 10.1038/npp.2012.112 pmid: 22781841
[9] Edwards J R, Yarychkivska O, Boulard M, et al. DNA methylation and DNA methyltransferases. Epigenetics & Chromatin, 2017, 10(1):1-10.
[10] Robert M F, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genetics, 2003, 33(1):61-65.
doi: 10.1038/ng1068
[11] Song Y, Zhou T, Zong Y Q, et al. Arsenic inhibited cholesterol efflux of THP-1 macrophages via ROS-mediated ABCA1 hypermethylation. Toxicology, 2019, 424:152225.
doi: 10.1016/j.tox.2019.05.012
[12] Xing X Q, Li B, Xu S L, et al. 5-Aza-2'-deoxycytidine, a DNA methylation inhibitor, attenuates hypoxic pulmonary hypertension via demethylation of the PTEN promoter. European Journal of Pharmacology, 2019, 855:227-234.
doi: S0014-2999(19)30325-5 pmid: 31085236
[13] Liu D L, Wu K, Yang Y, et al. Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Molecular Carcinogenesis, 2020, 59(1):32-44.
doi: 10.1002/mc.v59.1
[14] Kang X W, Kong F W, Huang K, et al. LncRNA MIR210HG promotes proliferation and invasion of non-small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. OncoTargets and Therapy, 2019, 12:3779-3790.
doi: 10.2147/OTT
[15] Ruscio A D, Ebralidze A K, Benoukraf T, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 2013, 503(7476):371-376.
doi: 10.1038/nature12598
[16] Qi D F, Li J H, Que B, et al. Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell International, 2016, 16:81.
doi: 10.1186/s12935-016-0356-8
[17] Yin Y M, Morgunova E, Jolma A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science, 2017, 356(6337):eaaj2239. DOI: 10.1126/science.aaj2239.
doi: 10.1126/science.aaj2239
[18] Arab K, Karaulanov E, Musheev M, et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nature Genetics, 2019, 51(2):217-223.
doi: 10.1038/s41588-018-0306-6
[19] Zhou L Y, Ren M, Zeng T T, et al. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death & Disease, 2019, 10:813.
[20] Chen Y, Lin Y, Shu Y, et al. Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer. Mol Cancer, 2020, 19(1):94.
doi: 10.1186/s12943-020-01207-4 pmid: 32443966
[21] Huang H L, Weng H Y, Chen J J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell, 2020, 37(3):270-288.
doi: 10.1016/j.ccell.2020.02.004
[22] Patil D P, Pickering B F, Jaffrey S R. Reading m6A in the transcriptome: m6A-binding proteins. Trends in Cell Biology, 2018, 28(2):113-127.
doi: 10.1016/j.tcb.2017.10.001
[23] Zuo L, Su H, Zhang Q, et al. Comprehensive analysis of lncRNAs N6-methyladenosine modification in colorectal cancer. Aging, 2021, 13(3):4182-4198.
doi: 10.18632/aging.v13i3
[24] Zuo X L, Chen Z Q, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and Acts as a nanotherapeutic target in hepatocellular carcinoma. Journal of Hematology & Oncology, 2020, 13(1):5.
[25] Zheng Z Q, Li Z X, Zhou G Q, et al. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as CeRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Research, 2019, 79(18):4612-4626.
doi: 10.1158/0008-5472.CAN-19-0799
[26] Yang D D, Qiao J, Wang G Y, et al. N6-methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 2018, 46(8):3906-3920.
doi: 10.1093/nar/gky130
[27] Zhang S C, Zhao B S, Zhou A D, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell, 2017, 31(4):591-606.e6.
doi: 10.1016/j.ccell.2017.02.013
[28] Lan T, Li H, Zhang D L, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Molecular Cancer, 2019, 18(1):186.
doi: 10.1186/s12943-019-1106-z
[29] Wang Y, Lu J H, Wu Q N, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 2019, 18(1):174.
doi: 10.1186/s12943-019-1105-0 pmid: 31791342
[30] Hsu J M, Li C W, Lai Y J, et al. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Research, 2018, 78(22):6349-6353.
doi: 10.1158/0008-5472.CAN-18-1892
[31] Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget, 2016, 7(41):67532-67550.
doi: 10.18632/oncotarget.v7i41
[32] Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992):689-693.
doi: 10.1126/science.1192002
[33] Zhou H L, Luo G B, Wise J A, et al. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Research, 2014, 42(2):701-713.
doi: 10.1093/nar/gkt875
[34] Jiang B, Yang B, Wang Q, et al. lncRNA PVT1 promotes hepatitis B virus-positive liver cancer progression by disturbing histone methylation on the c-Myc promoter. Oncology Reports, 2020, 43(2):718-726.
doi: 10.3892/or.2019.7444 pmid: 31894346
[35] Yu Y, Zhang M J, Liu J, et al. Long non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in cholangiocarcinoma Molecular Therapy - Nucleic Acids, 2018, 13:503-513.
doi: 10.1016/j.omtn.2018.10.001
[36] Song Y, Wang R, Li L W, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. International Journal of Oncology, 2019, 54(1):77-86.
doi: 10.3892/ijo.2018.4625 pmid: 30431069
[37] Yu S X, Yang D L, Ye Y Y, et al. Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer. Cancer Science, 2019, 110(7):2211-2225.
doi: 10.1111/cas.2019.110.issue-7
[38] Chen Z Y, Chen X, Lu B B, et al. Up-regulated LINC01234 promotes non-small-cell lung cancer cell metastasis by activating VAV3 and repressing BTG2 expression. Journal of Hematology & Oncology, 2020, 13(1):1-14.
[39] Guo P P, Chen W Q, Li H Y, et al. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathology & Oncology Research, 2018, 24(4):807-813.
[40] Pan Z W, Mao W M, Bao Y J, et al. The long noncoding RNA CASC9 regulates migration and invasion in esophageal cancer. Cancer Medicine, 2016, 5(9):2442-2447.
doi: 10.1002/cam4.2016.5.issue-9
[41] Liang Y, Chen X D, Wu Y Y, et al. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death and Differentiation, 2018, 25(11):1980-1995.
doi: 10.1038/s41418-018-0084-9 pmid: 29511340
[42] Ma H L, Chang H Y, Yang W Y, et al. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Molecular Cancer, 2020, 19(1):1-16.
doi: 10.1186/s12943-019-1085-0
[43] Wang Y, Chen W Y, Lian J Y, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death & Differentiation, 2020, 27(2):695-710.
[44] Ding G Q, Li W, Liu J P, et al. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomedicine & Pharmacotherapy, 2017, 94:326-331.
doi: 10.1016/j.biopha.2017.07.046
[45] Yi T B, Zhou X Q, Sang K, et al. Activation of lncRNA lnc-SLC4A1-1 induced by H3K27 acetylation promotes the development of breast cancer via activating CXCL8 and NF-κB pathway. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1):3765-3773.
doi: 10.1080/21691401.2019.1664559
[46] Ye P, Lv X, Aizemaiti R, et al. H3K27ac-activated LINC00519 promotes lung squamous cell carcinoma progression by targeting miR-450b-5p/miR-515-5p/YAP1 axis. Cell Proliferation, 2020, 53(5):e12797.
[47] Liu D S, Zhang H, Cong J C, et al. H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through miR-3163/YAP1 axis. Journal of Cellular Biochemistry, 2020, 121(2):1923-1933.
doi: 10.1002/jcb.v121.2
[48] Chen F B, Qi S C, Zhang X, et al. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β-catenin pathway in oral squamous cell carcinoma. International Journal of Oncology, 2019, 54(4):1183-1194.
[49] Tang J M, Zhong G S, Zhang H B, et al. LncRNA DANCR upregulates PI3K/AKT signaling through activating serine phosphorylation of RXRA. Cell Death & Disease, 2018, 9:1167.
[50] Yang Y, Zhang J P, Chen X, et al. LncRNA FTX sponges miR-215 and inhibits phosphorylation of vimentin for promoting colorectal cancer progression. Gene Therapy, 2018, 25(5):321-330.
doi: 10.1038/s41434-018-0026-7 pmid: 29925853
[51] Faktor J, Pjechová M, Hernychová L, et al. Protein ubiquitination research in oncology. Klinicka Onkologie, 2019, 32(Suppl 3):56-64. DOI: 10.14735/amko20193s56.
doi: 10.14735/amko20193s56
[52] Zhao B, Tsai Y C, Jin B, et al. Protein engineering in the ubiquitin system: tools for discovery and beyond. Pharmacological Reviews, 2020, 72(2):380-413.
doi: 10.1124/pr.118.015651 pmid: 32107274
[53] Cao S Z, Wang Y Z, Li J Q, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. American Journal of Cancer Research, 2016, 6(11):2561-2574.
[54] Wu G Z, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 2014, 130(17):1452-1465.
doi: 10.1161/CIRCULATIONAHA.114.011675
[55] Zhang A, Zhao J C, Kim J, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Reports, 2015, 13(1):209-221.
doi: S2211-1247(15)00982-1 pmid: 26411689
[56] Wani W Y, Chatham J C, Darley-Usmar V, et al. O-GlcNAcylation and neurodegeneration. Brain Research Bulletin, 2017, 133:80-87.
doi: 10.1016/j.brainresbull.2016.08.002
[57] Girotti M R, Salatino M, Dalotto-Moreno T, et al. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. Journal of Experimental Medicine, 2020, 217(2). DOI: 10.1084/jem.20182041.
doi: 10.1084/jem.20182041
[58] Pan S M, Liu Y Q, Liu Q Q, et al. HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2019, 1866(5):750-760.
doi: 10.1016/j.bbamcr.2019.02.004
[59] Hu J L, Shan Y J, Ma J, et al. LncRNA ST3Gal6-AS1/ST3Gal6 axis mediates colorectal cancer progression by regulating α-2, 3 sialylation via PI3K/Akt signaling. International Journal of Cancer, 2019, 145(2):450-460.
doi: 10.1002/ijc.v145.2
[60] Zhao Q, Zheng K, Ma C M, et al. PTPS facilitates compartmentalized LTBP1 S-nitrosylation and promotes tumor growth under hypoxia. Molecular Cell, 2020, 77(1):95-107.e5.
doi: S1097-2765(19)30723-3 pmid: 31628042
[1] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[2] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[3] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[4] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[5] 堵晶晶, 谭镇东, 刘辰东, 巫小倩, 张培文, 张顺华, 朱砺. 长链非编码RNA的研究现状[J]. 中国生物工程杂志, 2016, 36(9): 59-74.
[6] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[7] 李冉, 王恬, 朱鸿亮. 长链非编码RNA的生物学功能和研究方法[J]. 中国生物工程杂志, 2015, 35(9): 66-70.
[8] 景园雅, 陈平, 常建锋, 陈苏. 自噬与癌症[J]. 中国生物工程杂志, 2015, 35(11): 70-76.
[9] 安云鹤, 李宝明, 李越, 尹玲, 曲俊杰, 苏晓星, 武会娟. 癌症基因组测序方案制定的研究进展[J]. 中国生物工程杂志, 2014, 34(11): 9-17.
[10] 吕鑫, 杜卫华, 朱化彬. 体细胞克隆发展现状、出现问题及解决方法[J]. 中国生物工程杂志, 2013, 33(4): 136-142.
[11] 王一, 田海山, 李校堃. 成纤维细胞生长因子8(FGF8)研究进展[J]. 中国生物工程杂志, 2011, 31(01): 75-80.
[12] 杜娟,胡红刚,侯玲玲. IL-13Rα2介导的毒素融合蛋白在肿瘤治疗中的应用[J]. 中国生物工程杂志, 2009, 29(04): 98-103.
[13] 郭秀君. 染色体转位(Translocation)与癌症[J]. 中国生物工程杂志, 2000, 20(2): 69-71.
[14] 段学伟. Cynergen公司发现一种新的药用蛋白质治疗神经疾病[J]. 中国生物工程杂志, 1990, 10(5): 58-58.
[15] 卓肇文. 将抗体转成酶[J]. 中国生物工程杂志, 1989, 9(2): 47-47.