Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 103-109    DOI: 10.13523/j.cb.2104012
综述     
乳杆菌对致病假单胞菌的抑制作用研究进展*
孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱()
哈尔滨工业大学生命科学与技术学院 哈尔滨 150000
Research Progress on the Inhibitory Effect of Lactobacillus on Pathogenic Pseudomonas
SUN Yao,QIAO Meng-wei,LIU Shi-yu,GONG Dian-liang,SONG Jin-zhu()
School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000,China
 全文: PDF(947 KB)   HTML
摘要:

假单胞菌污染事件在临床就医和日常饮食中频发,屡次产生致病、致死等恶劣后果,有效抑制致病假单胞菌并降低其耐药性作为解决该问题的关键手段,是目前的研究重点。相关研究表明益生菌等天然活性成分对假单胞菌产生多方面影响,以应用范围最广的益生菌——乳杆菌为例,综合国内外最新研究进展,论述了乳杆菌对假单胞菌的生物膜结构、生长活性、生物毒性、黏附细胞表面能力及被假单胞菌感染后的小鼠等产生的影响。深入挖掘乳杆菌等益生菌及其代谢产物成分的作用机制,是防治假单胞菌等微生物污染和感染的关键。

关键词: 乳杆菌假单胞菌益生菌微生物防治    
Abstract:

Pseudomonas contamination incidents are not seldom encountered in clinical treatment and daily diet, which may result in illness, death and other undesirable consequences. To this end,recent studies focus on the inhibiting of pathogenic Pseudomonas and the reducing of their drug resistance, in which it has been proved that the excruciating characters of Pseudomonas can be improved by natural active ingredients (for example, probiotics). As a kind of widely existing probiotics, Lactobacillus is utilized for the survey. By considering the studies all over the world up to date, effects of Lactobacillus on the biofilm structure, growth activity, ability to adhere to cell surfaces and biological toxicity of Pseudomonas are introduced. Also, the influence of mice infected by Pseudomonas are is demonstrated. Based on the surveys aforementioned, it is significant to find out biological principles of influence on Pseudomonas of Lactobacillus and other probiotics (including their metabolites), which are the key to prevent and control microbial contamination and infection.

Key words: Lactobacillus    Pseudomonas    Probiotics    Microbiological control
收稿日期: 2021-04-09 出版日期: 2021-08-31
ZTFLH:  Q819  
基金资助: * 国家重点研发计划资助项目(2018YFD0200407)
通讯作者: 宋金柱     E-mail: sjz@hit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙瑶
乔梦伟
刘诗宇
宫殿良
宋金柱

引用本文:

孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱. 乳杆菌对致病假单胞菌的抑制作用研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 103-109.

SUN Yao,QIAO Meng-wei,LIU Shi-yu,GONG Dian-liang,SONG Jin-zhu. Research Progress on the Inhibitory Effect of Lactobacillus on Pathogenic Pseudomonas. China Biotechnology, 2021, 41(8): 103-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104012        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/103

乳酸菌名称 细菌素 分离纯化方法 致病假单胞菌
名称
抑制机制 文献
植物乳杆菌Lactobacillus plantarum B23 Lac-B23 SP Sepherose Fast Flow阳离子交换柱层析和Superdex Peptide 10/300 GL分子筛 荧光假单胞菌 破坏生物膜中的网络结构 [16]
面包乳杆菌Lactobacillus crustorum ZHG 2-1 ZHG 2-1粗提物CE 0.45 μm过滤器过滤、乙酸乙酯蒸馏、旋转蒸发、真空干燥制成粉末 铜绿假单胞菌 抑制生物膜的形成,降低预形成生物膜的厚度 [18]
罗伊氏乳杆菌Lactobacillus reuteri 罗伊氏素 离子交换树脂高效液相色谱(HPLC) 铜绿假单胞菌 抑制菌体生长,导致菌体死亡 [23]
植物乳杆菌Q7 Lactobacillus plantarum Q7 植物乳杆菌素Q7 吸附-解吸、CM-Fast Flow和Superdex Peptide 10/300 GL纯化 荧光假单胞菌 螯合锌离子后破坏菌体的外膜,引起钾离子和磷酸盐离子泄露 [24]
植物乳杆菌Lactobacillus plantarum B23 Lac-B23 SP Sepherose Fast Flow阳离子交换柱层析和Superdex Peptide 10/300 GL分子筛 荧光假单胞菌 假单胞菌株胞内物质的泄露,并破坏其细胞膜结构 [25]
植物乳杆菌Lactobacillus plantarum DL3 植物乳杆菌素DL3 乙酸乙酯提取蛋白质、Sephadex G50柱(1.6 cm×60 cm)色谱系统纯化 铜绿假单胞菌 破坏细胞壁,使得菌体中的蛋白质的泄漏,造成菌体死亡 [26]
植物乳杆菌Lactobacillus plantarum DY4-2 细菌素DY4-2 乙酸乙酯萃取、超滤、Sephadex G25色谱和高效液相色谱 荧光假单胞菌、
铜绿假单胞菌
降低总活菌数和总挥发性盐基氮(TVB-N) [27]
副干酪乳杆菌Lactobacillus paracasei FX-6 抗菌物质 上清液中分子量低于6 000的组分、超滤法进行冷冻干燥 恶臭假单胞菌 提高细菌细胞膜的通透性,破坏菌的细胞形态,影响其蛋白质的合成 [28]、
[29]
表1  乳杆菌细菌素对致病假单胞菌的抑制
细菌名称 抑制活性的百分比/%
48 h 72 h
植物乳杆菌(Lactobacillus plantarium) 40 80
嗜酸乳杆菌(Lactobacillus acidophilus) 40 90
干酪乳杆菌(Lactobacillus casei) 10 90
发酵乳杆菌(Lactobacillus fermentum) 60 20
罗伊氏乳杆菌(Lactobacillus reuteri) 20 70
加氏乳杆菌(Lactobacillus gasseri) 30 70
嗜酸乳杆菌(Lactobacillus acidophilus) (商业) 0 0
H2O2 3% 0 100
乳酸 3% 0 100
表2  部分乳杆菌培养上清48 h和72 h对多重耐药铜绿假单胞菌的抑制活性[32]
[1] di Somma A, Recupido F, Cirillo A, et al. Antibiofilm properties of temporin-L on Pseudomonas fluorescens in static and in-flow conditions. International Journal of Molecular Sciences, 2020, 21(22):8526.
doi: 10.3390/ijms21228526
[2] 林捷, 方陈玉, 陆晶芳, 等. 食品中椰毒假单胞菌酵米亚种实时荧光PCR检测的研究. 食品安全质量检测学报, 2020, 11(11):3538-3544.
Lin J, Fang C Y, Lu J F, et al. Detection of Pseudomonas cocovenenans subsp.farinofermentans by fluorescence real-time PCR method. Journal of Food Safety & Quality, 2020, 11(11):3538-3544.
[3] 耿雪峰, 张晶, 庄众, 等. 2002-2016年中国椰毒假单胞菌食物中毒报告事件的流行病学分析. 卫生研究, 2020, 49(4):648-650.
Geng X F, Zhang J, Zhuang Z, et al. Epidemiological analysis of food poisoning cases reported by Pseudomonas cocoitas in China in 2002 and 2016. Journal of Hygiene Research, 2020, 49(4):648-650.
[4] 范璐, 栾杰. 云南省一例唐菖蒲伯克霍尔德氏菌(椰毒假单胞菌酵米面亚种)食物中毒事件调查分析. 食品安全质量检测学报, 2019, 10(23):8098-8101.
Fan L, Luan J. Investigation and analysis for an event of Burkholderiagladioli (Pseudomonas cocovenenans subtype farinofermentans) food poison in Yunnan Province. Journal of Food Safety & Quality, 2019, 10(23):8098-8101.
[5] 何伟佳, 岳思远, 王翔, 等. 食源性致病菌群体感应信号分子的检测. 生物工程学报, 2019, 35(9):1707-1714.
He W J, Yue S Y, Wang X, et al. Progress in detection and modeling of quorum sensing molecules of foodborne pathogens. Chinese Journal of Biotechnology, 2019, 35(9):1707-1714.
[6] Gabriel V, Arthur O, Seppo S, et al. Lactic acid bacteria: Microbiological and functional aspects Florida: CRC Press, 2019.
[7] 霍小琰, 李少英, 郭荣荣. 酸马奶中乳酸菌的鉴定及生物学特性的研究. 微生物学通报, 2012, 39(7):940-948.
Huo X Y, Li S Y, Guo R R. Identification and biological characteristics of lactic acid bacteria in acid mare milk. Chinese Journal of Microbiology, 2012, 39(7):940-948.
[8] 李平兰, 张篪, 江汉湖. 乳酸菌细菌素研究进展. 微生物学通报, 1998, 25(5):295-298.
Li P L, Zhang C, Jiang H H. Research progress of bacteriocin in lactic acid bacteria. Microbiology, 1998, 25(5):295-298.
[9] Ellis J C, Ross R P, Hill C. Nisin Z and lacticin 3147 improve efficacy of antibiotics against clinically significant bacteria. Future Microbiology, 2019, 14:1573-1587.
doi: 10.2217/fmb-2019-0153
[10] 朱英莲, 王鹏, 孙京新, 等. 乳酸菌素对铜绿假单胞菌的抑菌效果研究. 青岛农业大学学报(自然科学版), 2019, 36(2):142-146.
Zhu Y L, Wang P, Sun J X, et al. Antibacterial effect of lactobacillin on Pseudomonas aeruginosa. Journal of Qingdao Agricultural University (Natural Science), 2019, 36(2):142-146.
[11] Kumar M, You S M, Beiyuan J Z, et al. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320:124412.
doi: 10.1016/j.biortech.2020.124412
[12] 杨宗桥, 樊海琴, 付敏, 等. 医院铜绿假单胞菌分布及耐药性分析. 临床合理用药杂志, 2020, 13(34):121-122.
Yang Z Q, Fan H Q, Fu M, et al. Analysis of distribution and drug resistance of Pseudomonas aeruginosa in hospital. Chinese Journal of Clinical Rational Drug Use, 2020, 13(34):121-122.
[13] 李秋云, 郭浩, 王林庚. 乳酸菌素的功效及生产工艺简述. 江西畜牧兽医杂志, 2020(2):59.
Li Q Y, Guo H, Wang L G. Effects and production process of lactobacillin. Jiangxi Journal of Animal Husbandry & Veterinary Medicine, 2020(2):59.
[14] 杨福愉. 生物膜结构研究的一些进展. 生物化学与生物物理进展, 2003, 30(4):495-502.
Yang F Y. Recent advances in the study of membrane structure. Progress in Biochemistry and Biophysics, 2003, 30(4):495-502.
[15] Whitchurch C B, Tolker-Nielsen T, Ragas P C, et al. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295(5559):1487.
pmid: 11859186
[16] 王伟, 步雨珊, 杨慧, 等. 乳酸菌抗菌肽lac-B23对荧光假单胞菌生物膜的影响研究. 中国食品科学技术学会第十五届年会论文集. 青岛, 2018: 110-111.
Wang W, Bu Y S, Yang H, et al. Effects of Lactobacillus antimicrobial peptide lac-B23 on the biofilm of Pseudomonas fluoresces.Proceedings of the 15th Annual Meeting of the Chinese Society of Food Science and Technology. Qingdao, 2018:110-111.
[17] 王伟. 乳酸菌抗菌肽Lac-B23对荧光假单胞菌生物膜的消减作用研究. 哈尔滨: 哈尔滨工业大学, 2017.
Wang W. Study on the effect of antibacterial peptides lac-B23 from Lactobacillus on Pseudomonas fluorescens biofilm. Harbin: Harbin Institute of Technology, 2017.
[18] Cui T Q, Bai F L, Sun M T, et al. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. LWT, 2020, 117:108696.
doi: 10.1016/j.lwt.2019.108696
[19] 王斌, 邵占涛, 陈营, 等. 2种乳酸菌对牙鲆体表、消化道粘液粘附及对4种致病菌的粘附抑制性. 中国微生态学杂志, 2005, 17(6):419-421, 424.
Wang B, Shao Z T, Chen Y, et al. The adhesion two strains of lactic Bacillus to the skin and enteron mucus of Flounder and the inhibitory adhesion to four strains of pathogenic bacteria. Chinese Journal of Microecology, 2005, 17(6):419-421, 424.
[20] Shoaib A, Dachang W, Xin Y. Determining the role of a probiotic in the restoration of intestinal microbial balance by molecular and cultural techniques. Genetics and Molecular Research: GMR, 2015, 14(1):1526-1537.
doi: 10.4238/2015.February.20.8
[21] Gravesen A, Sørensen K, Aarestrup F M, et al. Spontaneous nisin-ResistantListeria monocytogenesMutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microbial Drug Resistance, 2001, 7(2):127-135.
pmid: 11442339
[22] Fernandes J, Kumbhar R, Kulkarni R. Bacteriocins from lactic acid bacteria. Resonance, 2021, 26(3):387-398.
doi: 10.1007/s12045-021-1137-9
[23] Liang H F, Chen C N, Chang Y, et al. Natural antimicrobial agent (reuterin) produced bylactobacillus reuteri for sanitization of biological tissues inoculated withpseudomonas aeruginosa. Biotechnology and Bioengineering, 2003, 84(2):233-239.
doi: 10.1002/(ISSN)1097-0290
[24] Liu H, Zhang L W, Yi H X, et al. Identification and characterization of plantaricin Q7, a novel plantaricin produced by Lactobacillus plantarum Q7. LWT - Food Science and Technology, 2016, 71:386-390.
doi: 10.1016/j.lwt.2016.04.009
[25] 刘文婷, 王伟, 易华西, 等. 乳酸菌细菌素Lac-B23对荧光假单胞菌及其生物膜的抑制作用. 食品科学, 2017, 38(24):1-7.
doi: 10.1111/jfds.1973.38.issue-1
Liu W T, Wang W, Yi H X, et al. Anti-biofilm and antimicrobial activity of bacteriocin lac-B23 from lactic acid bacteria against Pseudomonas fluorescens. Food Science, 2017, 38(24):1-7.
doi: 10.1111/jfds.1973.38.issue-1
[26] Lv X, Lin Y, Jie Y, et al. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai. European Food Research and Technology, 2018, 244(2):323-331.
doi: 10.1007/s00217-017-2958-3
[27] Lv X, Ma H H, Sun M T, et al. A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control, 2018, 89:22-31.
doi: 10.1016/j.foodcont.2018.02.002
[28] Duan X X, Chen S Y, Duan S, et al. Antibiotic activities of the natural antimicrobial substance produced by Lactobacillus paracasei FX-6 against Pseudomonas putida. LWT, 2020, 123:109096.
doi: 10.1016/j.lwt.2020.109096
[29] Duan X X, Duan S, Wang Q E, et al. Effects of the natural antimicrobial substance from Lactobacillus paracasei FX-6 on shelf life and microbial composition in chicken breast during refrigerated storage. Food Control, 2020, 109:106906.
doi: 10.1016/j.foodcont.2019.106906
[30] Matsuoca Góis C G, Lopes-Santos L, de Oliveira Beranger J P, et al. The control of Lactobacillus sp. by extracellular compound produced by Pseudomonas aeruginosa in the fermentation process of fuel ethanol industry in Brazil. Journal of Sustainable Bioenergy Systems, 2013, 3(3):194-201.
doi: 10.4236/jsbs.2013.33027
[31] Alexandre Y, Le Berre R, Barbier G, et al. Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections. BMC Microbiology, 2014, 14(1):107.
doi: 10.1186/1471-2180-14-107
[32] Jamalifar H, Rahimi H, Samadi N, et al. Antimicrobial activity of different Lactobacillus species against multi-drug resistant clinical isolates of Pseudomonas aeruginosa. Iranian Journal of Microbiology, 2011, 3(1):21-25.
pmid: 22347578
[33] Zhou C M, Wang B, Wu Q, et al. Identification of cGAS as an innate immune sensor of extracellular bacterium Pseudomonas aeruginosa. iScience, 2021, 24(1):101928.
doi: 10.1016/j.isci.2020.101928
[34] Santos Rosado Castro M, da Silva Fernandes M, Kabuki D Y, et al. Modelling Pseudomonas fluorescens and Pseudomonas aeruginosa biofilm formation on stainless steel surfaces and controlling through sanitisers. International Dairy Journal, 2021, 114:104945.
doi: 10.1016/j.idairyj.2020.104945
[35] Miake S, Nomoto K, Yokokura T, et al. Protective effect of Lactobacillus casei on Pseudomonas aeruginosa infection in mice. Infection and Immunity, 1985, 48(2):480-485.
doi: 10.1128/iai.48.2.480-485.1985 pmid: 3921464
[36] Khailova L, Baird C H, Rush A A, et al. Lactobacillus rhamnosus GG improves outcome in experimental Pseudomonas aeruginosa pneumonia: potential role of regulatory T cells. Shock (Augusta, Ga), 2013, 40(6):496-503.
doi: 10.1097/SHK.0000000000000066
[37] Lenzmeier T D, Mudaliar N S, Stanbro J A, et al. Application of Lactobacillus gasseri 63 AM supernatant to Pseudomonas aeruginosa-infected wounds prevents sepsis in murine models of thermal injury and dorsal excision. Journal of Medical Microbiology, 2019, 68(10):1560-1572.
doi: 10.1099/jmm.0.001066 pmid: 31460863
[38] 姜晓燕, 李小彦. 国家食品安全监督抽检中微生物抽检现状及问题分析. 食品安全导刊, 2020(12):36.
Jiang X Y, Li X Y. Current situation and problems of microorganism sampling in Chinese food safety supervision. China Food Safety Magazine, 2020(12):36.
[39] Forestier C, Guelon D, Cluytens V, et al. Oral probiotic and prevention of Pseudomonas aeruginosa infections: a randomized, double-blind, placebo-controlled pilot study in intensive care unit patients. Critical Care, 2008, 12(3):1-10.
[1] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[2] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[3] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[4] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[5] 方雪瑶,胡龙华,杭亚平,俞凤,陈艳慧,钟桥石. 铜绿假单胞菌Ⅵ型分泌系统的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 88-93.
[6] 曾杰. 赖氨酰内肽酶特性及其表达、应用的研究进展[J]. 中国生物工程杂志, 2018, 38(3): 89-96.
[7] 施慧琳, 王泽建, 吴杰群, 郭美锦, 储炬, 庄英萍. 透明颤菌vgb基因在脱氮假单胞菌中的表达及对维生素B12合成的碳中心代谢流分析[J]. 中国生物工程杂志, 2016, 36(9): 21-30.
[8] 查代明, 张炳火, 李汉全, 闫云君. 假单胞菌属脂肪酶的分子生物学研究进展[J]. 中国生物工程杂志, 2015, 35(9): 114-121.
[9] 陈宝珍, 李红梅, 王伟洁, 陈群毅. 产胸苷磷酸化酶菌株初筛方法的建立及其应用[J]. 中国生物工程杂志, 2014, 34(12): 78-83.
[10] 张秋香, 侯慧丽, 芦颖, 陈卫, 钟瑾. 猪链球菌口服疫苗的制备及小鼠血清免疫效果的评价[J]. 中国生物工程杂志, 2013, 33(7): 25-30.
[11] 赵云, 朱蓓霖, 汪正华, 周杰, 吴自荣, 黄静. 麦芽四糖淀粉酶基因优化表达及酶学性质分析[J]. 中国生物工程杂志, 2013, 33(5): 100-106.
[12] 赵健烽, 辛兴, 卫培培, 骞爱荣, Akateh Tazifua Alfred, 商澎, 杨树林. 强磁场重力环境对Pseudomonas aeruginosa N1207的影响[J]. 中国生物工程杂志, 2013, 33(2): 27-33.
[13] 陈臣, 任婧, 周方方, 刘振民, 郭本恒. 植物乳杆菌的比较基因组学研究[J]. 中国生物工程杂志, 2013, 33(12): 35-44.
[14] 杨毅, 李治, 高玲霞, 孙燕. 荧光假单胞菌抗生性代谢产物合成相关基因的研究现状[J]. 中国生物工程杂志, 2012, 32(08): 100-106.
[15] 郭铃, 孙靓, 李检秀, 孙菲菲, 黄艳燕, 黄日波. 四环素抗性重组鼠李糖乳杆菌的构建[J]. 中国生物工程杂志, 2011, 31(8): 79-84.