Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (9): 88-93    DOI: 10.13523/j.cb.20180913
综述     
铜绿假单胞菌Ⅵ型分泌系统的研究进展 *
方雪瑶,胡龙华,杭亚平,俞凤,陈艳慧,钟桥石()
南昌大学第二附属医院检验科 江西省检验医学重点实验室 南昌 330006
Research Progress of Type VI Secretion System in Pseudomonas aeruginosa
Xue-yao FANG,Long-hua HU,Ya-ping HANG,Feng YU,Yan-hui CHEN,Qiao-shi ZHONG()
Department of Clinical Laboratory Medicine,the Second Affiliated Hospital of Nanchang University,Key Laboratory of Laboratory Medicine in Jiangxi Province,Nanchang 330006,China
 全文: PDF(730 KB)   HTML
摘要:

铜绿假单胞菌是一种能引起多部位急、慢性感染且难以用抗生素控制的机会致病菌,近年来已成为院内感染的主要致病菌之一。大量研究表明,细菌将毒力因子精准输送至宿主细胞是其致病的关键,分泌系统在这一过程中扮演重要作用,其中近期发现的Ⅵ型分泌系统(type VI secretion system,T6SS)在铜绿假单胞菌与宿主间的相互作用和促进生物膜的形成等机制中发挥重要作用,已引起国内外学者高度关注。着重对铜绿假单胞菌T6SS的结构组成、效应功能和调节机制等相关研究进行简要综述,旨在为铜绿假单胞菌感染患者的治疗提供新策略。

关键词: 铜绿假单胞菌Ⅵ型分泌系统效应蛋白    
Abstract:

In recent years, Pseudomonas aeruginosa has become one of the main pathogens of nosocomial infections, which is an opportunistic pathogen can cause acute or chronic multiple infections and is hard to be controlled by antibiotics. Studies have shown that the key to pathogenicity is the precise delivery of virulence factors to host cells by bacteria, while the secretory system plays an important role in this process. Among them, the recently discovered type VI secretion system (T6SS) is a type of secretion system that has drawn great attention from domestic and foreign,which plays an important role not only in the interaction between Pseudomonas aeruginosa and the host but also in the mechanism of promoting biofilm formation. Focusing on the studies of the structure, functions and regulatory mechanisms of Pseudomonas aeruginosa T6SS, a brief review was conducted to provide a new strategy for the treatment of patients with Pseudomonas aeruginosa infection.

Key words: Pseudomonas aeruginosa    Type VI secretion system    Effectors
收稿日期: 2018-03-29 出版日期: 2018-10-12
基金资助: * 江西省青年自然科学基金项目(20171BAB2150798);江西省教育厅一般项目(GJJ160172)
通讯作者: 钟桥石     E-mail: zhong20000947@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
方雪瑶
胡龙华
杭亚平
俞凤
陈艳慧
钟桥石

引用本文:

方雪瑶,胡龙华,杭亚平,俞凤,陈艳慧,钟桥石. 铜绿假单胞菌Ⅵ型分泌系统的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 88-93.

Xue-yao FANG,Long-hua HU,Ya-ping HANG,Feng YU,Yan-hui CHEN,Qiao-shi ZHONG. Research Progress of Type VI Secretion System in Pseudomonas aeruginosa. China Biotechnology, 2018, 38(9): 88-93.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180913        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I9/88

图1  T6SS的结构及装配示意图(改编自参考文献[19])
[1] Golovkine G, Reboud E, Huber P . Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front Cell Infect Microbiol, 2017,7:532.
[2] Mougous J D, Cuff M E, Raunser S , et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006,312(5779):1526-1530.
doi: 10.1126/science.1128393
[3] Bladergroen M R, Badelt K, Spaink H P . Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact, 2003,16(1):53-64.
doi: 10.1094/MPMI.2003.16.1.53
[4] Pukatzki S, Ma A T, Sturtevant D , et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA, 2006,103(5):1528-1533.
doi: 10.1073/pnas.0510322103
[5] Boyer F, Fichant G, Berthod J , et al. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources. BMC Genomics, 2009,10(1):104.
doi: 10.1186/1471-2164-10-104
[6] Brunet Y R, Zoued A, Boyer F , et al. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet, 2015,11(10):e1005545.
doi: 10.1371/journal.pgen.1005545
[7] Logger L, Aschtgen M S, Guerin M , et al. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol, 2016,428(22):4424-4437.
doi: 10.1016/j.jmb.2016.08.032
[8] Zoued A, Duneau J P, Durand E , et al. Tryptophan-mediated dimerization of the TssL transmembrane anchor is required for type VI secretion system activity. J Mol Biol, 2018,430(7):987-1003.
doi: 10.1016/j.jmb.2018.02.008
[9] Brunet Y R, Henin J, Celia H , et al. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep, 2014,15(3):315-321.
doi: 10.1002/embr.201337936
[10] Shneider M M, Buth S A, Ho B T , et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013,500(7462):350-353.
doi: 10.1038/nature12453
[11] Cianfanelli F R, Alcoforado D J, Guo M , et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog, 2016,12(6):e1005735.
doi: 10.1371/journal.ppat.1005735
[12] Ge P, Scholl D, Leiman P G , et al. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol, 2015,22(5):377-382.
doi: 10.1038/nsmb.2995
[13] Brackmann M, Wang J, Basler M . Type VI secretion system sheath inter-subunit interactions modulate its contraction. EMBO Rep, 2018,19(2):225-233.
doi: 10.15252/embr.201744416
[14] Salih O, He S, Planamente S , et al. Atomic structure of type VI contractile sheath from Pseudomonas aeruginosa. Structure, 2018,26(2):329-336.
doi: 10.1016/j.str.2017.12.005
[15] Lossi N S, Dajani R, Freemont P , et al. Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology, 2011,157(Pt 12):3292-3305.
doi: 10.1099/mic.0.051987-0
[16] Pietrosiuk A, Lenherr E D, Falk S , et al. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem, 2011,286(34):30010-30021.
doi: 10.1074/jbc.M111.253377
[17] Corbitt J, Yeo J S, Davis C I , et al. T6SS dynamics reveals a novel secretion mechanism in Pseudomonas aeruginosa. J Bacteriol, 2018,200(11):e000744-17.
[18] Kapitein N, Bonemann G, Pietrosiuk A , et al. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol, 2013,87(5):1013-1028.
doi: 10.1111/mmi.2013.87.issue-5
[19] Cianfanelli F R, Monlezun L, Coulthurst S J . Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol, 2016,24(1):51-62.
doi: 10.1016/j.tim.2015.10.005
[20] Bingle L E, Bailey C M, Pallen M J . Type VI secretion: a beginner’s guide. Curr Opin Microbiol, 2008,11(1):3-8.
doi: 10.1016/j.mib.2008.01.006
[21] Hood R D, Singh P, Hsu F , et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010,7(1):25-37.
doi: 10.1016/j.chom.2009.12.007
[22] Lu D, Shang G, Yu Q , et al. Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013,69(Pt 5):524-527.
doi: 10.1107/S1744309113007148
[23] Russell A B, Peterson S B, Mougous J D . Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol, 2014,12(2):137-148.
doi: 10.1038/nrmicro3185
[24] Whitney J C, Beck C M, Goo Y A , et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol, 2014,92(3):529-542.
doi: 10.1111/mmi.12571
[25] Whitney J C, Quentin D, Sawai S , et al. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell, 2015,163(3):607-619.
doi: 10.1016/j.cell.2015.09.027
[26] Lacourse K D, Peterson S B, Kulasekara H D , et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol, 2018,3(4):440-446.
doi: 10.1038/s41564-018-0113-y
[27] Russell A B, Leroux M, Hathazi K , et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 2013,496(7446):508-512.
doi: 10.1038/nature12074
[28] Wilderman P J, Vasil A I, Johnson Z , et al. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Molecular Microbiology, 2001,39(2):291-303.
doi: 10.1046/j.1365-2958.2001.02282.x
[29] Jiang F, Waterfield N R, Yang J , et al. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe, 2014,15(5):600-610.
doi: 10.1016/j.chom.2014.04.010
[30] Sana T G, Baumann C, Merdes A , et al. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio, 2015,6(3):e712.
[31] Kierbel A, Gassama-Diagne A, Rocha C , et al. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol, 2007,177(1):21-27.
doi: 10.1083/jcb.200605142
[32] Lee J, Zhang L . The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015,6(1):26-41.
doi: 10.1007/s13238-014-0100-x
[33] Lesic B, Starkey M, He J , et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology, 2009,155(Pt 9):2845-2855.
doi: 10.1099/mic.0.029082-0
[34] Gallique M, Bouteiller M, Merieau A . The type VI secretion system: a dynamic system for bacterial communication. Front Microbiol, 2017,8:1454.
doi: 10.3389/fmicb.2017.01454
[35] Sana T G, Hachani A, Bucior I , et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J Biol Chem, 2012,287(32):27095-27105.
doi: 10.1074/jbc.M112.376368
[36] Kustu S, Santero E, Keener J , et al. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev, 1989,53(3):367-376.
[37] Viducic D, Murakami K, Amoh T , et al. RpoN modulates carbapenem tolerance in Pseudomonas aeruginosa through Pseudomonas quinolone signal and PqsE. Antimicrobial Agents & Chemotherapy, 2016,60(10):5752-5764.
[38] Zhao C, Yang L, Yicai C , et al. RpoN Regulates virulence factors of Pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. International Journal of Molecular Sciences, 2015,16(12):28311-28319.
doi: 10.3390/ijms161226103
[39] Shao X, Zhang X, Zhang Y , et al. RpoN-dependent direct regulation of quorum sensing and the type VI secretion system in Pseudomonas aeruginosa PAO1. J Bacteriol, 2018,200(16):e00205-18.
[40] Al G M M, M H , , et al. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev, 2009,23(2):249-259.
doi: 10.1101/gad.1739009
[41] Allsopp L P, Wood T E, Howard S A , et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 2017,114(29):201700286.
[42] Brencic A, Mcfarland K A, Mcmanus H R , et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Molecular Microbiology, 2009,73(3):434-445.
doi: 10.1111/mmi.2009.73.issue-3
[43] Yasuhiko I, Melissa S, Adrianne E , et al. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Molecular Microbiology, 2010,78(1):158-172.
[44] Unterweger D, Kostiuk B, Pukatzki S . Adaptor proteins of type VI secretion system effectors. Trends Microbiol, 2017,25(1):8-10.
doi: 10.1016/j.tim.2016.10.003
[45] Lin J, Cheng J, Chen K , et al. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol, 2015,5:70.
[46] Nguyen V S, Logger L, Spinelli S , et al. Inhibition of type VI secretion by an anti-TssM llama nanobody. PLoS One, 2015,10(3):e122187.
[1] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[2] 曾杰. 赖氨酰内肽酶特性及其表达、应用的研究进展[J]. 中国生物工程杂志, 2018, 38(3): 89-96.
[3] 扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.
[4] 徐安毕, 黄来强. 效应蛋白LepB的表达,纯化及其亚克隆片段的结晶研究[J]. 中国生物工程杂志, 2014, 34(5): 1-5.
[5] 徐安毕, 黄来强. SidK-VatA蛋白复合物的表达和纯化[J]. 中国生物工程杂志, 2014, 34(06): 1-6.
[6] 赵健烽, 辛兴, 卫培培, 骞爱荣, Akateh Tazifua Alfred, 商澎, 杨树林. 强磁场重力环境对Pseudomonas aeruginosa N1207的影响[J]. 中国生物工程杂志, 2013, 33(2): 27-33.