Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (5): 40-46    DOI: 10.13523/j.cb.20180506
研究报告     
肿瘤精准医学知识数据库的设计与构建
汪凌1,陈新2,*
1 浙江大学化学工程与生物工程学院 杭州 310027
2 浙江大学药物生物技术研究所 杭州 310058
Design and Construction of Tumor Precision Medicine Knowledge Database
Ling WANG1,Xin CHEN2,*
1 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2 Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(846 KB)   HTML
摘要:

目的:整合现有前沿的大量而分散的精准医学知识以形成系统完整的知识数据库,为个体组学数据的临床应用提供依据,旨在最终实现基于组学特征的精准用药推荐。方法:采用MySQL数据库管理系统构建数据库,从FDA伴随诊断、NCCN指南、My Cancer Genome、GDSC四大权威医学资源中手动收集精准用药知识,并将原始数据标准化、结构化后以统一的格式存储。结果:成功设计并构建了肿瘤精准医学知识库,目前共收录1 940条精准用药指导,涵盖了基因突变等14种不同类型的组学特征。结论:精准医学知识数据库收录了肿瘤分子组学特征和治疗策略的关联信息,可为临床上个体化治疗方案的制订提供参考依据。数据库的建立为精准医疗临床决策支持系统的开发奠定了基础。

关键词: 肿瘤精准医学数据库组学数据    
Abstract:

Objective:To integrate substantial but scattered state-of-the-art precision medicine knowledge and form a systematic knowledge network, to support clinical application of individual omics data, aiming at precision medication recommendations.Methods:The database was constructed using MySQL. Precision medicine knowledge from FDA companion diagnosis, NCCN guidelines, My Cancer Genome and GDSC was manually collected in a unified format after being standardized and structured.Results:The tumor precision medicine knowledge base (PMKB) was successfully designed and constructed and has already collected 1 940 clinical directives, covering 14 kinds of variations.Conclusion:PMKB collects information relating tumor mutations and therapeutic strategies, which can provide personalized treatments of reference. PMKB is also the base of constructing a clinical decision support system of precision medicine.

Key words: Tumor    Precision medicine    Database    Omics data
收稿日期: 2017-10-12 出版日期: 2018-06-05
ZTFLH:  Q354  
通讯作者: 陈新   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪凌
陈新

引用本文:

汪凌,陈新. 肿瘤精准医学知识数据库的设计与构建[J]. 中国生物工程杂志, 2018, 38(5): 40-46.

Ling WANG,Xin CHEN. Design and Construction of Tumor Precision Medicine Knowledge Database. China Biotechnology, 2018, 38(5): 40-46.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180506        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I5/40

图1  精准医学知识数据库实体关系图
Clinical
directive ID
Indication
complex ID
Therapeutic
strategy ID
CD1 CI1 TS1
CD2 CI2 TS2
表1  临床用药指导表
图2  用药指征逻辑拆分示意图
Indication complex ID Operator
CI1 or
CI2 and
CI3 not
表2  综合指征表
Indication
complex ID
Indication
type
Component
order
Indication
complex ID
Indication
atomic ID
CI1 complex 1 CI2
CI1 complex 2 CI3
CI2 atomic 1 AI1
CI2 atomic 2 AI2
CI3 atomic 1 AI3
表3  综合指征成分表
Indication atomic ID Indication atomic type
AI1 基因突变
AI2 基因突变
AI3 基因突变
表4  分子指征表
Therapeutic strategy ID Therapeutic strategy
omponents ID
TS1 TSC1
TS1 TSC2
表5  治疗策略表
Therapeutic
strategy
components ID
Components
type
Therapeutic
strategy
components
TSC1 靶向治疗 Drug A
TSC2 化疗 Drug B
表6  治疗策略成分表
数据来源 临床用药指导
记录条数
FDA 44
NCCN 70
My Cancer Genome 58
GDSC 1 768
总计 1 940
表7  PMKB临床用药指导条目统计
数据表名称 英文表名 记录条数
临床用药指导表 clinical_directive 1 940
注释表 annotation 65 601
治疗策略表 therapeutic_strategy 499
治疗策略成分表 therapeutic_strategy_components 351
综合指征表 indication_complex 2 835
综合指征成分表 indication_complex_components 6 006
分子指征表 indication_atomic 2 301
高甲基化表 feature_gene_hypermethylation 501
拷贝数变异表 feature_gene_copy_number_variation 359
基因融合表 feature_gene_fusion 12
基因融合状态未知表 feature_gene_fusion_unknown 1
基因表达异常表 feature_gene_expression 1
信号通路激活状态表 feature_pathway_activity 22
蛋白质表达异常表 feature_protein_expression 24
基因突变表 feature_gene_mutations 995
基因未突变表 feature_gene_no_mutations 5
基因突变状态未知表 feature_gene_status_unknown 1
外显子突变表 feature_gene_exon_mutation 14
单核苷酸多态性表 feature_gene_coding_snp 19
染色体变异表 feature_chromosome_mutation 1
其他临床指征表 feature_other_clinical_indication 94
表8  精准医学知识数据库条目统计
图3  精准医学知识搜索系统示意图
[1] Stratton M R, Campbell P J, Futreal P A . The cancer genome. Nature, 2009,458(7239):719-724.
doi: 10.1038/nature07943
[2] 付文华, 钱海利, 詹启敏 . 中国精准医学发展的需求和任务. 中国生化药物杂志, 2016,36(4):1-4.
Fu W H, Qian H L, Zhan Q M . Precision medicine in China. Chinese Journal of Biochemical Pharmaceutics, 2016,36(4):1-4.
[3] Garraway L A, Verweij J, Ballman K V . Precision oncology: an overview. Journal of Clinical Oncology, 2013,31(15):1803-1805.
doi: 10.1200/JCO.2013.49.4799
[4] Sorich M J, Wiese M D, Rowland A , et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Annals of Oncology, 2015,26(1):13-21.
doi: 10.1093/annonc/mdu378 pmid: 25115304
[5] Allegra C J, Rumble R B, Richard L S , et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American society of clinical oncology provisional clinical opinion update 2015 summary. Journal of Clinical Oncology, 2016,34(2):179-185.
[6] Ali S M, Hensing T, Schrock A B , et al. Comprehensive genomic profiling identifies a subset of crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist, 2016,21(6):762-770.
doi: 10.1634/theoncologist.2015-0497
[7] Rankin A, Klempner S J, Erlich R , et al. Broad detection of alterations predicted to confer Lack of benefit from EGFR antibodies or sensitivity to targeted therapy in advanced colorectal cancer. Oncologist, 2016,21(11):1306-1314.
doi: 10.1634/theoncologist.2016-0148 pmid: 27682134
[8] Boussemart, Wang A , Wong M K K, et al. Hybrid-capture based genomic profiling identifies BRAF V600 and non-V600 alterations in melanoma samples negative by prior testing. Annals of Oncology, 2017,28(suppl_5):v428-v448.
doi: 10.1093/annonc/mdx377.020
[9] Kusnoor S V, Koonce T Y, Levy M A , et al. My cancer genome: evaluating an educational model to introduce patients and caregivers to precision medicine information. AMIA Joint Summits on Translational Science, 2016,( 2016):112-121.
pmid: 5001739
[10] Levy M, Lovly C, Horn L , et al. My cancer genome: Web-based clinical decision support for genome-directed lung cancer treatment. Journal of Clinical Oncology, 2011,29(15 suppl):7576.
doi: 10.1093/annonc/mdr431
[11] Iorio F, Knijnenburg T, Vis D , et al. A landscape of pharmacogenomic interactions in cancer. Cell, 2016,166(3):740.
doi: 10.1016/j.cell.2016.06.017 pmid: 27397505
[12] Castaneda C, Nalley K, Mannion C , et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. Journal of Clinical Bioinformatics, 2015,5(1):4.
doi: 10.1186/s13336-015-0019-3 pmid: 4381462
[13] Fridlyand J, Simon R M, Walrath J C , et al. Considerations for the successful co-development of targeted cancer therapies and companion diagnostics. Nature Reviews Drug Discovery, 2013,12(10):743.
doi: 10.1038/nrd4101 pmid: 24008432
[14] Mansfield E A . FDA perspective on companion diagnostics: an evolving paradigm. Clinical Cancer Research, 2014,20(6):1453-1457.
doi: 10.1158/1078-0432.CCR-13-1954 pmid: 24634468
[15] National Comprehensive Cancer Network. About NCCN.[2017-12-27]. .
[16] National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: non-small cell lung.[2017-12-27]. .
[17] Vanderbilt-Ingram Cancer Center, My Cancer Genome (Website Index). [2017-12-27]..
[18] Yang W, Soares J, Greninger P , et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 2013,41:D955-D961.
[19] Al-Haddad M A, Friedlin J, Kesterson J , et al. Natural language processing for the development of a clinical registry: a validation study in intraductal papillary mucinous neoplasms. HPB, 2010,12(10):688-695.
doi: 10.1111/j.1477-2574.2010.00235.x
[20] Koh H C, Tan G . Data mining applications in healthcare. Journal of Healthcare Information Management, 2005,19(2):64-72.
doi: 10.4314/ijonas.v5i1.49926 pmid: 15869215
[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[3] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[4] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[5] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[6] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[7] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[8] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[9] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[10] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[11] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[12] 何询,张鹏,张俊祥. 类器官的构建与应用进展[J]. 中国生物工程杂志, 2020, 40(12): 82-87.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[15] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.