Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (9): 84-90    DOI: 10.13523/j.cb.20190911
综述     
细胞形态相关技术在血液系统肿瘤中的应用 *
彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦()
中国人民解放军陆军军医大学 新桥医院血液病医学中心 重庆 400037
The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress
PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi()
Hematological Medical Center in Xinqiao Hospital of Military Medical University, Chongqing 400037, China
 全文: PDF(406 KB)   HTML
摘要:

细胞形态学检验是一门传统的血液病实验诊断技术,方便快捷,实用性强。细胞形态是病理诊断最直观的依据,但现行的普通光学显微镜镜检技术已不能完全满足血液肿瘤精准诊断的需求。如何开发研究或完善相关技术,最大发挥形态学的优势是值得探讨和研究的问题。系统阐述了细胞形态相关技术在血液系统肿瘤的早期诊断、疗效及预后评估及疾病复发等方面的应用研究进展,相信细胞形态相关技术必将为血液系统肿瘤的诊疗带来新的机遇。

关键词: 细胞形态显微镜流式细胞术人工智能血液系统肿瘤    
Abstract:

Cytomorphological test is a traditional experimental diagnostic technique for hematological diseases, which is convenient, fast and practical. It is the most intuitive basis for pathological diagnosis, while the current optical microscopy technology can not fully meet the needs of accurate diagnosis of hematological tumors. How to develop, research and improve the related technologies and maximize the advantages of morphology is a problem worthy of our discussion and research. The application of cytomorphological technology in early diagnosis, curative effect, prognosis evaluation and disease recurrence of Hematological neoplasms is systematically reviewed. It is believed that Cytomorphological technology will bring new opportunities for the diagnosis and treatment of hematological system tumors.

Key words: Cytomorphology    Microscope    Flow cytometry    Artificial intelligence    Hematological neoplasms
收稿日期: 2019-08-21 出版日期: 2019-09-20
ZTFLH:  R446.11+3  
基金资助: * 重庆市社会事业与民生保障科技创新专项子课题(cstc2016shms-ztzx10003);重庆市社会事业与民生保障科技创新专项(cstc2017shmsA130003)
通讯作者: 张曦     E-mail: zhangxxi@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭贤贵
杨武晨
李佳
苟阳
王平
刘思恒
张云
李艺
张曦

引用本文:

彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.

PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress. China Biotechnology, 2019, 39(9): 84-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190911        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I9/84

[1] Goodwin P C . A primer on the fundamental principles of light microscopy: Optimizing magnification, resolution, and contrast. Molecular Reproduction and Development, 2015,82(7-8):502-507.
[2] Zhao J, Liang J W, Xue H L , et al. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia, 2019,33(6):1387-1399.
[3] Vidholia A, Menon M P . “Cup-like” blasts in acute myeloid leukemia with FLT3 and NPM1 mutations. Blood, 2015,125(5):889.
[4] Teixeira C, Azevedo A P, Silva C , et al. “Cup-like” blast cells in B lymphoblastic leukaemia: A clinical case. Haematologica, 2018,103:323-323.
[5] Takaku T, Malide D, Chen J C , et al. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood, 2010,116(15):E41-E55.
[6] Spinner N B . Chromosome banding//Stanley M, Kelly H. Brenners encyclopedia of genetics. Amsterdan:Elsevier, 2013: 546-548.
[7] Hu L, Ru K, Zhang L , et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomarker Research, 2014,2(1):3.
[8] Bozorg-Ghalati F, Mohammadpour I, Ranjbaran R . Applications of fluorescence in situ hybridization in detection of disease biomarkers and personalized medicine. Comparative Clinical Pathology, 2019,28(1):3-10.
[9] Skonieczka K, Matiakowska K, Haus O . The hematological malignancies related to primary hypereosinophilia and their diagnostics. Postpy Higieny I Medycyny Dowiadczalnej, 2014,68:1530-1537.
[10] Dewald G W, Schad C R, Christensen E R , et al. The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genetics & Cytogenetics, 1993,71(1):7.
[11] Wan Thomas S K . Applications of fluorescence in situ hybridization technology in malignancies// Cancer cytogenetics [Methods in molecular biology]. Berlin: Springer, 2017, 75-90.
[12] Balzarotti F, Eilers Y, Gwosch K C , et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 2017,355(6325):606-661.
[13] Fernández-Suárez ,Marta, Ting A Y. Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology, 2008,9(12):929-943.
[14] Wang H W, Lei J, Shi Y . Biological cryo-electron microscopy in China. Protein Science, 2016,26(1):16-31.
[15] Terzakis J A, Santagada E, Hernandez A , et al. Scanning electron microscopy of peripheral blood smears: Comparison of normal blood with some common leukemias. Ultrastructural Pathology, 2005,29(1):19-28.
[16] Polliack A, Tadmor T . Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy. Leukemia & Lymphoma, 2011,52:14-17.
[17] Ru Y X, Mi Y C, Liu J H , et al. Significance of transmission electron microscopy in subtyping of monocytic leukemia. Ultrastructural Pathology, 2009,33(2):67-75.
[18] Chatterjee T, Mahapatra M, Pati H P , et al. Use of transmission electron microscopy in diagnosis of acute leukemias: A prospective study of fifty cases. Blood, 2005,106(11):4509.
[19] Chetty T, Masingi N I, Laher Z , et al. Acute megakaryoblastic leukaemia: light microscopy and scanning electron microscopy of blast cells. British Journal of Haematology, 2017,176(5):686.
[20] Terzakis J A, Taskin M . Peripheral blood smears of myelodysplasia patients: Scanning electron microscope findings. Ultrastructural Pathology, 2008,32(4):127-138.
[21] Resnitzky P, Shaft D, Shalev H , et al. Morphological features of congenital dyserythropoietic anemia type I: The role of electron microscopy in diagnosis. European Journal of Haematology, 2017,99(4):366-371.
[22] Shvidel L, Shtalrid M, Shaft D , et al. t(8;21) acute myeloid leukemia with trilineage phenotype diagnosed by electron microscopy. Leuk Lymphoma, 2008,49(11):2203-2205.
[23] Shvidel L, Sigler E, Shtalrid M , et al. Hybrid eosinophilic-basophilic acute myeloid leukaemia diagnosed by electron microscopy. British Journal of Haematology, 2007,137(4):381-383.
[24] Lee S, Graham L M, Chan G , et al. A diagnostic mystery solved by electron microscopy: A case of an “Atypical” lymphoproliferative disorder. Ultrastructural Pathology, 2012,36(5):362-365.
doi: 10.3109/01913123.2012.691952
[25] Eyden B, Chakrabarty B, Hatimy U . Carcinoma versus cytokeratin-positive lymphoma: A case report emphasizing the diagnostic role of electron microscopy. Ultrastructural Pathology, 2009,33(1):33-38.
[26] Yen C F, Sivasankar S . Minimizing open-loop piezoactuator nonlinearity artifacts in atomic force microscope measurements. Journal of Vacuum Science & Technology B, 2017,35(5):053201.
[27] Gaman A, Osiac E, Rotaru I , et al. Surface morphology of leukemic cells from chronic myeloid leukemia under atomic force microscopy. Curr Health Sci J, 2013,39(1):45-47.
[28] Zhang Y P, Zhang W, Wang S Q , et al. Detection of human erythrocytes influenced by iron deficiency anemia and thalassemia using atomic force microscopy. Micron, 2012,43(12):1287-1292.
[29] Li M, Liu L Q, Xi N , et al. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Science China-Life Sciences, 2012,55(11):968-973.
doi: 10.1007/s11427-012-4399-3
[30] Li J, Wertheim G, Paessler M , et al. Flow cytometry in pediatric hematopoietic malignancies. Clinics in Laboratory Medicine, 2017,37(4):879-893.
[31] Han Y, Gu Y, Zhang A C , et al. Review: imaging technologies for flow cytometry. Lab on a Chip, 2016,16(24):4639.
[32] Grimwade L F, Fuller K A, Erber W N . Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods, 2017,112:39-45.
[33] Hui H, Fuller K A, Chuah H , et al. Imaging flow cytometry to assess chromosomal abnormalities in chronic lymphocytic leukaemia. Methods, 2018,134-135:32-40.
[34] Lei C, Kobayashi H, Wu Y , et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc, 2018,13(7):1603-1631.
[35] Koo B K, Samady H . Strap in for the artificial intelligence revolution in interventional cardiology. JACC Cardiovasc Interv, 2019,12(14):1325-1327.
[36] Auffermann W F, Gozansky E K, Tridandapani S . Artificial intelligence in cardiothoracic radiology. Am J Roentgenol, 2019,212(5):1-5.
[37] Bora K, Chowdhury M, Mahanta L B , et al. Automated classification of Pap smear images to detect cervical dysplasia. Comput Methods Programs Biomed, 2017,138:31-47.
[38] Elsalamony H A . Healthy and unhealthy red blood cell detection in human blood smears using neural networks. Micron, 2016,83:32-41.
[39] Hegde R B, Prasad K, Hebbar H , et al. Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Australas Phys Eng Sci Med, 2019,42(2):627-638.
[40] Kazemi F, Najafabadi T A, Araabi B N . Automatic recognition of acute myelogenous leukemia in blood microscopic images using K-means clustering and support vector machine. J Med Signals Sens, 2016,6(3):183-193.
[41] Su J, Liu S, Song J . A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput Methods Programs Biomed, 2017,152:115-123.
[42] Moshavash Z, Danyali H, Helfroush M S . An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J Digit Imaging, 2018,31(5):702-717.
[43] Acharya V, Kumar P . Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput, 2019,57(8):1783-1811.
[44] Shafique S, Tehsin S . Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat, 2018,17:1-7.
[45] Shaabanpour A F, Mollashahi B, Nosrati M , et al. Application of an artificial neural network in the diagnosis of chronic lymphocytic leukemia. Cureus, 2019,11(2):e4004.
[46] Saeedizadeh Z, Mehri Dehnavi A, Talebi A , et al. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier. J Microsc, 2016,261(1):46-56.
[47] Darrow M C, Zhang Y, Cinquin B P , et al. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J Cell Sci, 2016,129(18):3511-3517.
[48] Wang Q, Wang J, Zhou M , et al. Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology. Biomed Opt Express, 2017,8(6):3017-3028.
[1] 贺玲玲,骆婷婷,常艳,王亚哲,袁晓英,石韦华,赖悦云,石红霞,秦亚溱,黄晓军,刘艳荣. 28例急性巨核细胞白血病实验室检查结果分析 *[J]. 中国生物工程杂志, 2019, 39(9): 2-10.
[2] 赵四书,刘露,刘芳,仇海荣,范磊,李建勇,吴雨洁. CD11c在慢性淋巴细胞白血病诊断中的意义 *[J]. 中国生物工程杂志, 2019, 39(9): 19-24.
[3] 惠怡华,王海娜,戚宇锋,曹雪玲,管雪梅,段静静,段轶鋆,王艳峰,苏文. 山西省健康成年人淋巴细胞亚群正常参考值范围 *[J]. 中国生物工程杂志, 2019, 39(9): 41-49.
[4] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[5] 武奥申,刘小娜,刘昀赫,刘刚,刘雷. 二代基因测序数据管理和大数据平台在精准医学中的应用[J]. 中国生物工程杂志, 2019, 39(2): 101-111.
[6] 谢志勇,周翔. 基于机器学习的医学影像分析在药物研发和精准医疗方面的应用[J]. 中国生物工程杂志, 2019, 39(2): 90-100.
[7] 孟坤, 何庆瑜, 王通, 卢少华. 基于C6流式细胞仪平台应用FRET技术在活细胞中研究蛋白质相互作用[J]. 中国生物工程杂志, 2017, 37(5): 45-51.
[8] 魏金梅, 范小琴, 熊海庭, 高学娟, 刘小会, 刘朗夏. hnRNPK与Nef相互作用并有利于细胞表面CD4的表达[J]. 中国生物工程杂志, 2015, 35(4): 17-22.
[9] 文也, 唐少军, 肖蓉, 丁学知, 黄同龙, 雷良欢, 夏立秋. 粘细菌Myxococcus macrosporus STXZ54抗肿瘤活性物质的分离制备及其活性测定[J]. 中国生物工程杂志, 2014, 34(9): 63-71.
[10] 马洪梅, 张贵锋, 李春, 孔英俊, 高飞, 胡涛, 马光辉, 苏志国. 界面上配基种类对BSA吸附行为的影响[J]. 中国生物工程杂志, 2012, 32(07): 53-59.
[11] 龚超群 蔡继业 郜世隽 王秋兰 金花. 人外周血单个核细胞与脐带间充质干细胞共培养的AFM研究[J]. 中国生物工程杂志, 2010, 30(08): 6-12.
[12] 刘新星 郭宁 梁万洁 张剑. 补料发酵法批量培养磁敏感氧化亚铁硫杆菌[J]. 中国生物工程杂志, 2010, 30(06): 109-112.
[13] 赵春礼 祝元刚 段春礼 鲁玲玲 张凌 杨慧. 原子力显微镜检测过表达α-突触核蛋白引起的线粒体结构变化[J]. 中国生物工程杂志, 2009, 29(11): 12-16.
[14] 刘健,孙国强,郭美锦,张岳芳,贺莉清,袁旭军,张嗣良. 一新用于生化反应器的在线细胞显微观察仪[J]. 中国生物工程杂志, 2008, 28(8): 100-104.
[15] 陈海霞, 高文远, 李静, 耿美玉, 管华诗. 肿瘤与正常细胞表面糖链结构的流式细胞术分析[J]. 中国生物工程杂志, 2005, 25(6): 80-83.