Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (4): 78-89    DOI: 10.13523/j.cb.20180411
综述     
抗体固定化方法研究进展
杜凯,张卓玲,李婷华,饶微()
深圳市新产业生物医学工程股份有限公司 深圳 518118
The Research Progress of Antibody Immobilization
Kai DU,Zhuo-ling ZHANG,Ting-hua LI,Wei RAO()
Shenzhen New Industries Biomedical Engineering Co., Ltd., Shenzhen 518118, China
 全文: PDF(1846 KB)   HTML
摘要:

在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。

关键词: 抗体固定化免疫分析    
Abstract:

The antigen-antibody specific binding reaction is widely used in immunoassays and biochips in which antibody immobilization play a key role in the development of efficient diagnostics and separation tools. Progress in the field of biomolecular engineering, material chemistry and crosslinker chemistry have greatly promoted the development of antibody immobilization techniques. Antibody can be immobilized on different types of solid-phase surfaces by physical adsorption, covalent attachment and affinity-based interaction. The aim of antibody immobilization is to full retain antibody comformation and activity while maximize the antigen binding capacities by immobilizing antibody to the surface in the right orientation which is critical to the analytical performance. The most recent methods for immobilization of antibody on solid-phase surface, including physical adsorption, covalent binding through carboxyl, amine, thiol, carbohydrates as well as click chemistries, and through bioaffinity techniques. The characterization methods for the investigation of immobilized antibodies are summarized. In addition, future perspectives for methods of antibody immobilization are also discussed.

Key words: Antibody    Immobilization    Immunoassays
收稿日期: 2017-11-06 出版日期: 2018-05-08
ZTFLH:  Q511O629.7  
基金资助: 深圳市战略新兴产业发展专项资助项目(JSGG20160225150949068)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜凯
张卓玲
李婷华
饶微

引用本文:

杜凯,张卓玲,李婷华,饶微. 抗体固定化方法研究进展[J]. 中国生物工程杂志, 2018, 38(4): 78-89.

Kai DU,Zhuo-ling ZHANG,Ting-hua LI,Wei RAO. The Research Progress of Antibody Immobilization. China Biotechnology, 2018, 38(4): 78-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180411        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I4/78

图1  抗体的结构及固定化抗体的空间取向
图2  EDC/NHS活化羧基表面的反应机理
图3  光反应性探针辅助的亚硼酸连接法用于抗体固定
图4  通过Diels-Alder反应制备Herceptin 单抗偶联纳米粒
图5  末端含有硫酯的EYFP及连接有EYFP的脂质体的制备
图6  位点特异性定向共价偶联生物素化IgG的策略
图7  紫外线辅助下的核苷酸结合位点的抗体固定
图8  紫外线辅助下基于金属鳌合的抗体固定
技术方法 输入 输出 信息 应用
XPS[60,61] 单色X射线 光电子 元素和化学成分 定量载体表面抗体的密度
SE[62,63] 椭圆偏振光 光的相位和强度的变化 厚度、折射率、表面粗糙度 模式化分析、推断抗体形态
DPI[64,65] 激光 衰逝波的变化 质量、膜厚度、折射率、密度 通过质量和膜厚度推断抗体形态
SPR[66,67] 多角度单色激光 反射光和吸收光的变化 折射率、膜厚度 通过抗体和抗原的光吸收特性推断其形态
NR[68,69] 中子束 中子束反射后角度和波长的变化 折射率、膜厚度、表面粗糙度 模式化分析、推断抗体形态
AFM[70,71,72,73] 反馈驱动悬臂式纳米尖端 抗体在载体表面的高度、表面张力 表面粗糙度、相位信息、图像 精确定位高于载体表面14nm的抗体
QCM[74,75] 微量天平的共振频率 频率和振幅的变化 质量吸收系数、生物亲和性 通过压电石英晶体对抗体的吸收性和质量推断抗体形态
ToF-SIMS[76,77] 电离金属簇,“一级离子” 电离片段,“二级离子” 元素半定量、化学成分、分子质量 分辨F(ab')2和Fc片段氨基酸的种类及数量
表1  应用于抗体偶联与固相表面的分析技术
[1] Yu Q, Wang Q, Li B , et al. Technological development of antibody immobilization for optical immunoassays: progress and prospects. Critical Reviews in Analytical Chemistry, 2014,45(1):62-75.
doi: 10.1080/10408347.2014.881249
[2] Liu Y, Li C M . Advanced immobilization and amplification for high performance protein chips. Analytical Letters, 2012,45(2-3):130-155.
doi: 10.1080/00032719.2011.633187
[3] Wujcik E K, Wei H, Zhang X , et al. Antibody nanosensors: a detailed review. RSC Adv, 2014,4(82):43725-43745.
doi: 10.1039/C4RA07119K
[4] Welch N G, Scoble J A, Muir B W, et al. Orientation and characterization of immobilized antibodies for improved immunoassays (review) .Biointerphases , 2017, 12(2): 02D301.
doi: 10.1116/1.4978435
[5] Trilling A K, Beekwilder J, Zuilhof H . Antibody orientation on biosensor surfaces: a minireview. Analyst, 2013,138(6):1619-1627.
doi: 10.1039/c2an36787d pmid: 23337971
[6] Hoehne M, Samuel F, Dong A , et al. Adsorption of monoclonal antibodies to glass microparticles. J Pharm Sci, 2011,100(1):123-132.
doi: 10.1002/jps.22275 pmid: 20575075
[7] Low S C, Shaimi R, Thandaithabany Y , et al. Electrophoretic interactions between nitrocellulose membranes and proteins: Biointerface analysis and protein adhesion properties. Colloids Surf B Biointerfaces, 2013,110:248-253.
doi: 10.1016/j.colsurfb.2013.05.001 pmid: 23732801
[8] Shen H, Tauzin L J, Wang W , et al. Single-molecule kinetics of protein adsorption on thin nylon-6,6 films. Anal Chem, 2016,88(20):9926-9933.
doi: 10.1021/acs.analchem.5b04081 pmid: 27599237
[9] Daraee H, Eatemadi A, Abbasi E , et al. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol, 2016,44(1):410-422.
doi: 10.3109/21691401.2014.955107 pmid: 25229833
[10] Qian W, Yao D, Yu F , et al. Immobilization of antibodies on ultraflat polystyrene surfaces. Clin Chem, 2000,46(9):1456-1463.
doi: 10.1016/S0009-8981(00)00279-5 pmid: 10973890
[11] Wang Z, Huang Y, Li S , et al. Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectron, 2010,26(3):1074-1079.
doi: 10.1016/j.bios.2010.08.059 pmid: 20851594
[12] Xu H, Zhao X, Grant C , et al. Orientation of a monoclonal antibody adsorbed at the solid/solution interface: A combined study using atomic force microscopy and neutron reflectivity. Langmuir, 2006,22(14):6313-6320.
doi: 10.1021/la0532454
[13] Zeliszewska P, Wasilewska M, Adamczyk Z . Monolayers of immunoglobulin G on polystyrene microparticles and their interactions with human serum albumin. J Colloid Interface Sci, 2017,490:587-597.
doi: 10.1016/j.jcis.2016.11.090 pmid: 27923143
[14] Sun Y, Du H, Feng C , et al. Oriented immobilization of antibody through carbodiimide reaction and controlling electric field. Journal of Solid State Electrochemistry, 2015,19(10):3035-3043.
doi: 10.1007/s10008-015-2912-x
[15] Yang J, Gao P, Liu Y , et al. Label-free photoelectrochemical immunosensor for sensitive detection of ochratoxin A. Biosens Bioelectron, 2015,64:13-18.
doi: 10.1016/j.bios.2014.08.025 pmid: 25173733
[16] Booth M A, Partridge A, Wu Y . Investigating a functionalized terthiophene surface for the detection of progesterone using surface plasmon resonance. International Journal of Electronics and Electrical Engineering, 2016,4(2):181-184.
doi: 10.18178/ijeee.4.2.181-184
[17] Sam S, Touahir L, Salvador Andresa J , et al. Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir, 2010,26(2):809-814.
doi: 10.1021/la902220a pmid: 19725548
[18] Vashist S K . Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics (Basel), 2012,2(3):23-33.
doi: 10.3390/diagnostics2030023 pmid: 4665462
[19] Raghav R, Srivastava S . Immobilization strategy for enhancing sensitivity of immunosensors: L-asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosens Bioelectron, 2016,78:396-403.
doi: 10.1016/j.bios.2015.11.066
[20] Zhao M, Li H, Liu W , et al. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosens Bioelectron, 2016,79:581-588.
doi: 10.1016/j.bios.2015.12.099 pmid: 26749100
[21] Gunda N S K, Singh M, Norman L , et al. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 2014,305:522-530.
doi: 10.1016/j.apsusc.2014.03.130
[22] Wasserberg D, Nicosia C, Tromp E E , et al. Oriented protein immobilization using covalent and noncovalent chemistry on a thiol-reactive self-reporting surface. J Am Chem Soc, 2013,135(8):3104-3111.
doi: 10.1021/ja3102133 pmid: 23379762
[23] Wacker R, Schroder H, Niemeyer C M . Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal Biochem, 2004,330(2):281-287.
doi: 10.1016/j.ab.2004.03.017 pmid: 15203334
[24] Gauvreau V, Chevallier P, Vallières K , et al. Engineering surfaces for bioconjugation: developing strategies and quantifying the extent of the reactions. Bioconjugate Chemistry, 2004,15(5):1146-1156.
doi: 10.1021/bc049858u pmid: 15366971
[25] Patterson J T, Gros E, Zhou H , et al. Chemically generated IgG2 bispecific antibodies through disulfide bridging. Bioorg Med Chem Lett, 2017,27(16):3647-3652.
doi: 10.1016/j.bmcl.2017.07.021 pmid: 28720505
[26] Liu G, Shi G, Sheng H , et al. Doubly caged linker for AND-type fluorogenic construction of protein/antibody bioconjugates and in situ quantification. Angew Chem Int Ed Engl, 2017,56(30):8686-8691.
doi: 10.1002/anie.201702748 pmid: 28524357
[27] Levengood M R, Zhang X, Hunter J H , et al. Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angewandte Chemie International Edition, 2017,56(3):733-737.
doi: 10.1002/anie.201608292 pmid: 5299463
[28] Thompson E A . Production of antibodies for specific detection of dengue virus-2 by surface enhanced Raman spectroscopy. Hattiesburg: The University of Southern Mississippi, 2017.
[29] Zwyssig A, Schneider E M, Zeltner M , et al. Protein reduction and dialysis-free work-up through phosphines immobilized on a magnetic support: TCEP-functionalized carbon-coated cobalt nanoparticles. Chemistry, 2017,23(36):8585-8589.
doi: 10.1002/chem.201701162 pmid: 28513883
[30] Ichihara T, Akada J K, Kamei S , et al. A novel approach of protein immobilization for protein chips using an oligo-cysteine tag. Journal of Proteome Research, 2006,5(9):2144-2151.
doi: 10.1021/pr0504889 pmid: 16944925
[31] Blank K, Morfill J, Gaub H E . Site-specific immobilization of genetically engineered variants of Candida antarctica lipase B. Chembiochem, 2006,7(9):1349-1351.
doi: 10.1002/cbic.200600198 pmid: 16871616
[32] Camarero J A . New developments for the site-specific attachment of protein to surfaces. Biophysical Reviews and Letters, 2006,1(1):1-28.
doi: 10.1142/S1793048006000045
[33] Camarero J A, Cotton G J, Adeva A , et al. Chemical ligation of unprotected peptides directly from a solid support. J Pept Res, 1998,51(4):303-316.
doi: 10.1111/j.1399-3011.1998.tb00428.x pmid: 9560006
[34] Biju V . Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev, 2014,43(3):744-764.
doi: 10.1039/c3cs60273g pmid: 24220322
[35] Steen Redeker E, Ta D T, Cortens D , et al. Protein engineering for directed immobilization. Bioconjug Chem, 2013,24(11):1761-1777.
doi: 10.1021/bc4002823 pmid: 24160176
[36] Houseman B T, Gawalt E S, Mrksich M . Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir, 2003,19(5):1522-1531.
doi: 10.1021/la0262304
[37] Tuci G, Luconi L, Rossin A , et al. Aziridine-functionalized multiwalled carbon nanotubes: robust and versatile catalysts for the oxygen reduction reaction and knoevenagel condensation. ACS Appl Mater Interfaces, 2016,8(44):30099-30106.
doi: 10.1021/acsami.6b09033 pmid: 27768269
[38] Kolb H C, Finn M G, Sharpless K B . Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 2001,40(11):2004-2021.
doi: 10.1002/(ISSN)1521-3773
[39] Finetti C, Sola L, Pezzullo M , et al. Click chemistry immobilization of antibodies on polymer coated gold nanoparticles. Langmuir, 2016,32(29):7435-7441.
doi: 10.1021/acs.langmuir.6b01142 pmid: 27367748
[40] Trilling A K, Hesselink T, Van Houwelingen A , et al. Orientation of llama antibodies strongly increases sensitivity of biosensors. Biosens Bioelectron, 2014,60:130-136.
doi: 10.1016/j.bios.2014.04.017 pmid: 24793095
[41] Wolfe C A C, Hage D S . Studies on the rate and control of antibody oxidation by periodate. Analytical Biochemistry, 1995,231(1):123-130.
doi: 10.1006/abio.1995.1511 pmid: 8678290
[42] Puertas S, Moros M, Fernández-Pacheco R , et al. Designing novel nano-immunoassays: antibody orientation versus sensitivity. Journal of Physics D: Applied Physics, 2010,43(47):474012.
doi: 10.1088/0022-3727/43/47/474012
[43] Adak A K, Li B Y, Huang L D , et al. Fabrication of antibody microarrays by light-induced covalent and oriented immobilization. ACS Appl Mater Interfaces, 2014,6(13):10452-10460.
doi: 10.1021/am502011r pmid: 24903424
[44] Saxon E, Bertozzi C R . Cell surface engineering by a modified staudinger reaction. Science, 2000,287(5460):2007-2010.
doi: 10.1126/science.287.5460.2007 pmid: 10720325
[45] Soellner M B, Dickson K A, Nilsson B L , et al. Site-specific protein immobilization by staudinger ligation. Journal of the American Chemical Society, 2003,125(39):11790-11791.
doi: 10.1021/ja036712h pmid: 14505380
[46] Kohn M . Immobilization strategies for small molecule, peptide and protein microarrays. J Pept Sci, 2009,15(6):393-397.
doi: 10.1002/psc.1130 pmid: 19308932
[47] Bundy B C, Swartz J R . Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein protein click conjugation. Bioconjugate Chemistry, 2010,21(2):255-263.
doi: 10.1021/bc9002844
[48] Shi M, Wosnick J H, Ho K , et al. Immuno-polymeric nanoparticles by Diels-Alder chemistry. Angew Chem Int Ed Engl, 2007,46(32):6126-6131.
doi: 10.1002/ange.200701032 pmid: 17628481
[49] Dawson P, Muir T, Clark-Lewis I , et al. Synthesis of proteins by native chemical ligation. Science, 1994,266(5186):776-779.
doi: 10.1126/science.7973629 pmid: 7973629
[50] Reulen S W A, Brusselaars W W T, Langereis S , et al. Protein-liposome conjugates using cysteine-lipids and native chemical ligation. Bioconjugate Chemistry, 2007,18(2):590-596.
doi: 10.1021/bc0602782 pmid: 17315942
[51] Yang H M, Bao R M, Yu C M , et al. Fc-specific biotinylation of antibody using an engineered photoactivatable Z-Biotin and its biosensing application. Anal Chim Acta, 2017,949:76-82.
doi: 10.1016/j.aca.2016.10.039 pmid: 27876148
[52] Schneider C, Newman R A, Sutherland D R , et al. A one-step purification of membrane proteins using a high efficiency immunomatrix. Journal of Biological Chemistry, 1982,257(18):10766-10769.
doi: 10.1016/0165-022X(82)90005-7 pmid: 6955305
[53] Soler M, Estevez M C, Alvarez M , et al. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies. Sensors (Basel), 2014,14(2):2239-2258.
doi: 10.3390/s140202239 pmid: 3958245
[54] Jung Y, Kang H J, Lee J M , et al. Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem, 2008,374(1):99-105.
doi: 10.1016/j.ab.2007.10.022 pmid: 18023402
[55] Seymour E, Daaboul G G, Zhang X , et al. DNA-directed antibody immobilization for enhanced detection of single viral pathogens. Anal Chem, 2015,87(20):10505-10512.
doi: 10.1021/acs.analchem.5b02702 pmid: 26378807
[56] Alves N J, Kiziltepe T, Bilgicer B . Oriented surface immobilization of antibodies at the conserved nucleotide binding site for enhanced antigen detection. Langmuir, 2012,28(25):9640-9648.
doi: 10.1021/la301887s pmid: 22612330
[57] Mustafaoglu N, Alves N J, Bilgicer B . Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection. Biotechnol Bioeng, 2015,112(7):1327-1334.
doi: 10.1002/bit.v112.7
[58] Baio J E, Cheng F, Ratner D M , et al. Probing orientation of immobilized humanized anti-lysozyme variable fragment by time-of-flight secondary-ion mass spectrometry. J Biomed Mater Res A, 2011,97(1):1-7.
doi: 10.1002/jbm.a.33025 pmid: 3136626
[59] Ericsson E M, Enander K, Bui L , et al. Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: a strategy for microarraying of protein ligands. Langmuir, 2013,29(37):11687-11694.
doi: 10.1021/la4011778 pmid: 24007525
[60] Welch N G, Scoble J A, Easton C D , et al. High-throughput production of chromium(III) complexes for antibody immobilization. Analytical Chemistry, 2016,88(20):10102-10110.
doi: 10.1021/acs.analchem.6b02531 pmid: 27644116
[61] Welch N G, Easton C D, Scoble J A , et al. A chemiluminescent sandwich ELISA enhancement method using a chromium (III) coordination complex. Journal of Immunological Methods, 2016,438(Supplement C):59-66.
doi: 10.1016/j.jim.2016.09.003 pmid: 27650427
[62] Ray S, Mehta G, Srivastava S . Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics, 2010,10(4):731-748.
doi: 10.1002/pmic.200900458 pmid: 19953541
[63] Balevicius Z, Ramanaviciene A, Baleviciute I , et al. Evaluation of intact- and fragmented-antibody based immunosensors by total internal reflection ellipsometry. Sensors and Actuators B: Chemical, 2011,160(1):555-562.
doi: 10.1016/j.snb.2011.08.029
[64] Song H Y, Hobley J, Su X , et al. End-on covalent antibody immobilization on dual polarization interferometry sensor chip for enhanced immuno-sensing. Plasmonics, 2014,9(4):851-858.
doi: 10.1007/s11468-014-9680-9
[65] Escorihuela J , Gonzalez-Martinez M A, Lopez-Paz J L, et al. Dual-polarization interferometry: a novel technique to light up the nanomolecular world. Chem Rev, 2015,115(1):265-294.
doi: 10.1021/cr5002063 pmid: 25456305
[66] Mauriz E, García-Fernández M C, Lechuga L M . Towards the design of universal immunosurfaces for SPR-based assays: A review. TrAC Trends in Analytical Chemistry, 2016,79(Supplement C):191-198.
doi: 10.1016/j.trac.2016.02.006
[67] Zhang J, Sun Y, Wu Q , et al. A protein A modified Au-graphene oxide composite as an enhanced sensing platform for SPR-based immunoassay. Analyst, 2013,138(23):7175-7181.
doi: 10.1039/c3an01553j pmid: 24116373
[68] Zhao X, Pan F, Garcia-Gancedo L , et al. Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: effects of solution conditions and surface chemistry. J R Soc Interface, 2012,9(75):2457-2467.
doi: 10.1098/rsif.2012.0148 pmid: 3427501
[69] Schneck E, Berts I, Halperin A , et al. Neutron reflectometry from poly (ethylene-glycol) brushes binding anti-PEG antibodies: Evidence of ternary adsorption. Biomaterials, 2015,46(Supplement C):95-104.
doi: 10.1016/j.biomaterials.2014.12.041 pmid: 25678119
[70] Funari R, Della Ventura B, Altucci C , et al. Single molecule characterization of UV-activated antibodies on gold by atomic force microscopy. Langmuir, 2016,32(32):8084-8091.
doi: 10.1021/acs.langmuir.6b02218 pmid: 27444884
[71] Coppari E, Santini S, Bizzarri A R , et al. Kinetics and binding geometries of the complex between β2-microglobulin and its antibody: An AFM and SPR study. Biophysical Chemistry, 2016,211(Supplement C):19-27.
doi: 10.1016/j.bpc.2016.01.002 pmid: 26803406
[72] Vilhena J G, Dumitru A C, Herruzo E T , et al. Adsorption orientations and immunological recognition of antibodies on graphene. Nanoscale, 2016,8(27):13463-13475.
doi: 10.1039/c5nr07612a pmid: 27352029
[73] Marciello M, Filice M, Olea D , et al. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies. Langmuir, 2014,30(49):15022-15030.
doi: 10.1021/la502972v pmid: 25420004
[74] Deng X, Chen M, Fu Q , et al. A highly sensitive immunosorbent assay based on biotinylated graphene oxide and the quartz crystal microbalance. ACS Appl Mater Interfaces, 2016,8(3):1893-1902.
doi: 10.1021/acsami.5b10026 pmid: 26725646
[75] Akter R, Rhee C K, Rahman M A , . A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy. Biosens Bioelectron, 2015, 66.539-546.
doi: 10.1016/j.bios.2014.12.007 pmid: 25506902
[76] Foster R N, Harrison E T, Castner D G . ToF-SIMS and XPS characterization of protein films adsorbed onto bare and sodium styrenesulfonate-grafted gold substrates. Langmuir, 2016,32(13):3207-3216.
doi: 10.1021/acs.langmuir.5b04743 pmid: 26977542
[77] Welch N G , Madiona R M T, Payten T B, et al. Surface adsorbed antibody characterization using ToF-SIMS with principal component analysis and artificial neural networks. Langmuir, 2016,32(34):8717-8728.
doi: 10.1021/acs.langmuir.6b02312 pmid: 27494212
[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[3] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[4] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[5] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[6] 李帅鹏,任和,安展飞,杨艳坤,白仲虎. 血栓调节蛋白化学发光免疫分析检测方法的建立*[J]. 中国生物工程杂志, 2021, 41(4): 30-36.
[7] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[8] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[9] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[10] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[11] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[12] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[13] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[14] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[15] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.