Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (9): 48-55    DOI: 10.13523/j.cb.20140908
研究报告     
阻断嗜乙酰乙酸棒杆菌乙酸合成途径对其在缺氧条件下产琥珀酸的影响
刘伟, 郑璞, 靳新娜
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Effects of Disrupting Acetate Formation Pathways in Corynebacterium acetoacidophilum on Succinate Production Under Oxygen Deprivation
LIU Wei, ZHENG Pu, JIN Xin-na
The Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(861 KB)   HTML
摘要:

为探究和阻断嗜乙酰乙酸棒杆菌乙酸代谢途径,提高缺氧条件下琥珀酸的产率,减少副产物乙酸的合成,以C. acetoacidophilum ΔldhA为出发菌株,利用同源重组的方法分别敲除磷酸乙酰转移酶、乙酸激酶、CoA转移酶和丙酮酸脱氢酶复合体的相关基因pta,ackA,ctfAaceE,研究突变菌产琥珀酸过程中相关参数的变化。结果表明:敲除ptaackA基因后,对乙酸浓度,糖耗速率和糖酸转化率影响不大;pta,ackActfA基因的同时失活使得乙酸的浓度和摩尔转化率分别降低81.4%和77.2%,葡萄糖消耗速率下降28.3%,琥珀酸对葡萄糖摩尔转化率提高25.3%;而单独敲除aceE基因后,乙酸几乎不产生,葡萄糖消耗速率下降35.6%,琥珀酸对葡萄糖摩尔转化率提高34.7%。因此,缺氧条件下,嗜乙酰乙酸棒杆菌的乙酸合成几乎全部走乙酰CoA途径,pta,ackActfA是由乙酰CoA合成乙酸途径中最主要的基因;敲除基因aceE, 可以完全阻断乙酸生成,有效提高琥珀酸产率。

关键词: 嗜乙酰乙酸棒杆菌乙酸琥珀酸代谢阻断    
Abstract:

In order to reduce acetate production and improve succinate production and explore the main acetate formation pathways of C.acetoacidophilum, gene of pta, ackA, ctfA and aceE, which encoded phosphotransacetylase, acetate kinase, CoA-transfease and pyruvate dehydrogenase complex in C.acetoacidophilum were disrupted respectively by the means of homologous recombination. In C.acetoacidophilum ΔldhAΔpta-ackA, the titer of acetate, gluocse consumption rate, and both yields of acetate and succinate were found to be similar to that of C.acetoacidophilum ΔldhA. Furthermore, the titer and yield of acetate decreased by 81.4% and 77.2%, respectively, the glucose consumption rate decreased by 28.3% and the yield of succinate increased by 25.3% in C.acetoacidophilum ΔldhAΔctfAΔpta-ackA. In addition, when gene aceE was deleted, C. acetoacidophilum ΔldhAΔaceE almost produced no acetate, the glucose consumption rate decrease by 35.6% and the yield of succinate increased by 34.7%. Under oxygen deprivation, almost all acetate formed through acetyl-CoA in C.acetoacidophilum. Gene pta, ackA and ctfA were the main genes of acetate formation pathways from acetyl-CoA. Disrupting gene aceE could cut off acetate synthesis in C.acetoacidophilum, and effectively increase succinate production.

Key words: Corynebacterium acetoacidophilum    Acetate    Succinate    Metabolic disruption
收稿日期: 2014-06-30 出版日期: 2014-09-25
ZTFLH:  Q784  
基金资助:

国家“863”计划(2006AA020301-09)资助项目

通讯作者: 郑璞     E-mail: zhengpu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘伟, 郑璞, 靳新娜. 阻断嗜乙酰乙酸棒杆菌乙酸合成途径对其在缺氧条件下产琥珀酸的影响[J]. 中国生物工程杂志, 2014, 34(9): 48-55.

LIU Wei, ZHENG Pu, JIN Xin-na. Effects of Disrupting Acetate Formation Pathways in Corynebacterium acetoacidophilum on Succinate Production Under Oxygen Deprivation. China Biotechnology, 2014, 34(9): 48-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140908        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I9/48


[1] Shiio I. Process for producing L-glutamic acid. U.S. Patent 117915, 1964.

[2] Kinoshita S, Udaka S, Akita S, et al. Method of producing L-glutamic acid by fementation. U.S. Patent 3003925, 1961.

[3] 于芳,郑璞,倪晔,等. 碳酸盐对谷氨酸产生菌在缺氧条件下产有机酸的影响. 生物加工过程, 2011, 9(5): 22-26. Yu F, Zheng P, Ni Y, et al. Influence of bicarbonate on organic acid of glutamic acid-producing bacteria under oxygen deprivation. Chinese Journal of Bioprocess Engineering, 2011, 9(5): 22-26.

[4] 于芳. 谷氨酸棒杆菌产琥珀酸研究. 无锡:江南大学,2012. Yu F. Study on succinic acid production by Corynebacterium glutamicum. Wuxi: Jiangnan University, 2012.

[5] 杨倩,郑璞,于芳,等. 嗜乙酰乙酸棒杆菌Corynebacterium acetoacidophilum-Δldh缺氧条件下代谢葡萄糖途径的变化. 生物工程学报,2014, 30(3): 435-444. Yang Q, Zheng P, Yu F, et al. Metabolic shift of Corynebacterium acetoacidophilum-Δldh under oxygen deprivation conditions. Chinese Journal of Biotechnology, 2014, 30(3): 435-444.

[6] Dittrich C R, Vadali R V, Bennett G N, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E.coli mutant strains with deletion of ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnology Progress, 2005, 21(2): 627-631.

[7] Yasuda K, Jojima T, Suda M, et al. Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Applied Microbiology and Biotechnology, 2007, 77(4): 853-860.

[8] Litsanov B, Kabus A, Brocker M, et al. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microbial Biotechnology, 2012, 5(1): 116-128.

[9] Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Applied and Environmental Microbiology, 2012, 78(9): 3325-3337.

[10] Zhu N Q, Xia H H, Wang Z W, et al. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PloS ONE, 2013, 8(4): e60659.

[11] Yao W J, Deng X Z, Zhong H, et al. Double deletion of dtsR1 and pyc induce efficient L-glutamate overproduction in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2009, 36(7): 911-921.

[12] 余秉琦,沈微,诸葛健. 适用于异源 DNA 高效整合转化的谷氨酸棒杆菌电转化法. 中国生物工程杂志,2005, 25(2): 78-81. Yu B Q, Shen W, ZhuGe J. An improved method for integrative electrotransformation of Corynebacterium glutamicum with xenogeneic DNA. China Biotechnology, 2005, 25(2): 78-81.

[13] Molenaar D, Van der Rest M E, Lange C. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied Microbiology and Biotechnology, 1999, 52(4): 541-545.

[14] Inui M, Murakami S, Okino S, et al. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Journal of Molecular Microbiology and Biotechnology, 2004, 7(4): 182-196.

[15] 黄培堂. 分子克隆实验指南. 第三版. 北京:科学出版社,2002, 91-93. Huang PT. Molecular Cloning: a laboratory manual. Third edition. Beijing: Science Press, 2002, 91-93.

[16] Horton R M. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Molecular Biotechnology, 1995, 3(2):93-99.

[17] Liu Y P, Zheng P, Sun Z H, et al. Strategies of pH control and glucose fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. Journal of Chemical Technology and Biotechnology, 2008, 83(5): 722-729.

[18] 刘学胜,贾全栋,张伟国. 产丁二酸谷氨酸棒状杆菌基因缺失代谢工程菌株的构建. 微生物学通报,2013, 40(5): 739-748. Liu X S, Jia Q D, Zhang W G. Construction a metabolic engineering strain to produce succinic acid from Corynebacterium glutamicum by gene deletion mutation. Microbiology China, 2013, 40(5): 739-748.

[19] 贾全栋,刘学胜,郭燕风,等. 谷氨酸棒状杆菌厌氧产丁二酸的发酵条件. 生物加工过程,2014, 12(3): 7-11. Jia Q D, Liu X S, Guo Y F, et al. Influence of lactate dehydrogenase gene knockout on anaerobic production of succinic acid by Corynebacterium glutamicum. Chinese Journal of Bioprocess Engineering, 2013, 12(3): 739-748.

[20] Wang C, Zhang H L, Cai H, et al. Succinic acid production from corn hydrolysates by genetically engineered Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 2014, 172(1): 340-350.

[21] Sanchez A M, Bennett G N, San K Y. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnology Progress, 2005, 21(2): 358-365.

[22] 岳方方,姜岷,马江峰,等. 产琥珀酸大肠杆菌工程菌株的构建. 中国酿造,2010, (2): 25-29. Yue F F, Jiang M, Ma J F, et al. Construction of engineered Escherichia coli for succinate production. China Brewing, 2010, (2): 25-29.

[1] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[2] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[3] 郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.
[4] 王浩, 张敬书, 丁健, 罗洪镇, 陈锐, 史仲平. 限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比[J]. 中国生物工程杂志, 2016, 36(10): 60-71.
[5] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[6] 林娜, 高继海, 艾涛波, 范林洪, 王胜华, 陈放. 一种新型的油樟叶片总RNA提取方法[J]. 中国生物工程杂志, 2013, 33(5): 107-111.
[7] 申乃坤, 秦艳, 王成华, 朱婧, 廖思明, 黄日波. 一株丁二酸高产菌株的筛选鉴定及初步发酵研究[J]. 中国生物工程杂志, 2012, 32(10): 57-62.
[8] 张洋, 杜姗姗, 谢希贤, 徐庆阳, 陈宁. 过表达purA基因对腺苷积累的影响[J]. 中国生物工程杂志, 2011, 31(12): 22-26.
[9] 李宜奎 康俊华 康振 耿艳平 王义华 祁庆生. 大肠杆菌突变株QQS101发酵生产琥珀酸初步研究[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[10] 李宜奎, 康俊华, 康振, 耿艳平, 王义华, 祁庆生. 大肠杆菌突变株QQS101发酵生产琥珀酸初步研究[J]. 中国生物工程杂志, 2010, 30(10): 39-43.
[11] 于丽 马江锋 岳方方 刘树文 姜岷. 产琥珀酸重组大肠杆菌的发酵性能研究[J]. 中国生物工程杂志, 2010, 30(09): 43-48.
[12] 饶志明 徐美娟 陆元修 周晨 蓝春燕 窦文芳 张晓梅 许泓瑜 许正宏. 钝齿棒杆菌精氨酸琥珀酸酶编码基因argH的克隆表达及其重组菌发酵产精氨酸研究[J]. 中国生物工程杂志, 2010, 30(09): 49-55.
[13] 毛雨 王丹 李强 邢建民 黄占斌. 产琥珀酸放线杆菌的原生质体制备与再生[J]. 中国生物工程杂志, 2010, 30(06): 103-108.
[14] 徐惠娟 许敬亮 郭颖 庄新姝 袁振宏. 合成气厌氧发酵生产有机酸和醇的研究进展[J]. 中国生物工程杂志, 2010, 30(03): 112-118.
[15] 马林祥 崔颖 朱丽明 潘欣宇 王雪峰 张本. BMSCs与PLGA三维生物支架复合修复喉软骨缺损的研究[J]. 中国生物工程杂志, 2009, 29(12): 7-12.