Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 54-60    DOI: 10.13523/j.cb.20150609
技术与方法     
三种方法制备的猪小肠黏膜下层支架的生物相容性和免疫原性的对比研究
黄伟锋, 程鹏, 姜平
南方医科大学南方医院整形外科 广州 510515
A Comparative Study of Three Ways of Acellular Process on Small Intestinal Submucosa's Biocompatibility and Immunogenicity
HUANG Wei-feng, CHENG Peng, JIANG Ping
Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
 全文: PDF(1249 KB)   HTML
摘要:

目的:采用三种不同的脱细胞方法制备小肠黏膜下层(small intestinal submucosa,SIS)支架,研究其生物相容性、免疫原性以及构建真皮替代物等方面,为组织工程化皮肤的细胞载体支架提供优选方案。方法:将新鲜猪小肠分别采用单纯机械法、机械-化学法、机械-酶消化法制备三种不同的SIS,分别作为A、B、C组;通过复合成纤维细胞构建真皮替代物,利用HE染色观察支架组织学形态以及细胞粘附情况、MTT法检测细胞增殖情况,同时观察支架移植SD大鼠皮下1、2、4周后炎症反应及血管化程度。结果:组织学观察A组有细胞残留,B、C组未见细胞残留。MTT结果显示细胞在支架上生长旺盛增殖能力强,其中A组优于B、C组;皮下移植后的HE结果表明B组引起炎症反应较A、C组弱,而C组血管化程度较A、B组更明显。结论:机械-化学法以及机械-酶消化法制备的SIS具有良好的生物相容性以及免疫原性,可作为构建组织工程化皮肤细胞载体的选择。

关键词: 小肠黏膜下层脱细胞处理成纤维细胞真皮替代物细胞载体支架    
Abstract:

Objective: To compare the effect of three ways of acellular process on biocompatibility and immunogenicity of the small intestinal submucosa, preparing for the scaffold of tissue engineering skin. Methods: Fresh jejunum of pig was prepared by mechanical method, mechanical-chemical method and machanical-enzymicmethod into SIS, kept as groups A,B,C, respectively. Fibroblasts were seeded on the SIS scaffolds to construct the derm substitute. The comparative examinations were performed by histological observation, MTT assay to observe the structure of the scaffolds, proliferation and adhesion of the cell on the scaffolds. The inflammation cause by the scaffolds after subcutaneous implantation for 1,2,4 weeks were also analysed. Results: Histological observation shows that there were no residual cells in groups B and C, but residual cells in group A. The proliferation and adhesion test indicated that group A was better than the other two(P<0.05).The subcutaneous implantation analysis showed that group B caused a less serious inflammation, and the vascularization capacity of group C was greater than groups A and B. Conclusion: Mechanical-chemical method and machanical-enzymic method were better ways to prepare SIS as a scaffold for tissue engineering skin.

Key words: Small submucosa intestinal    Acellularization    Fibroblast    Derm substitute    Cell scaffold
收稿日期: 2015-03-11 出版日期: 2015-06-25
ZTFLH:  Q813.1  
基金资助:

广东省自然科学基金(S2011010003864)资助项目

通讯作者: 姜平     E-mail: jp9585@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄伟锋, 程鹏, 姜平. 三种方法制备的猪小肠黏膜下层支架的生物相容性和免疫原性的对比研究[J]. 中国生物工程杂志, 2015, 35(6): 54-60.

HUANG Wei-feng, CHENG Peng, JIANG Ping. A Comparative Study of Three Ways of Acellular Process on Small Intestinal Submucosa's Biocompatibility and Immunogenicity. China Biotechnology, 2015, 35(6): 54-60.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150609        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/54


[1] Badylak S F, Lindberg K. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns,2001,27(3):254-266.

[2] Shi L, Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burns Trauma,2013,3(4):173-179.

[3] Matsumoto T, Holmes R H, Burdick C O, et al. Replacement of large veins with free inverted segments of small bowel: autografts of submucosal membrane in dogs and clinical use. Ann Surg,1966,164(5):845-848.

[4] Ansaloni L, Cambrini P, Catena F, et al. Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg,2007,20(4):237-241.

[5] Ashley R A, Roth C C, Palmer B W, et al. Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. BJU Int,2010,105(10):1462-1468.

[6] Keskin M, Kelly C P, Moreira-Gonzalez A, et al. Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer. Plast Reconstr Surg,2008,122(2):400-409.

[7] Badylak S, Obermiller J, Geddes L, et al. Extracellular matrix for myocardial repair. Heart Surg Forum,2003,6(2):E20-E26.

[8] Badylak S F, Tullius R, Kokini K, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res,1995,29(8):977-985.

[9] Badylak S F, Gilbert T W. Immune response to biologic scaffold materials. Semin Immunol,2008,20(2):109-116.

[10] Kalota S J. Small intestinal submucosa tension-free sling: postoperative inflammatory reactions and additional data. J Urol,2004,172(4 Pt 1):1349-1350.

[11] Abraham G A, Murray J, Billiar K, et al. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res,2000,51(3):442-452.

[12] 陈薇,李次会,武术,等. 脱细胞处理对小肠黏膜下层细胞残留及生长因子含量影响的实验研究. 中国修复重建外科杂志,2010,24(1):94-99. Chen W, Li C H, Wu S, et al. Effect of acellular process on small intestinal submucosa cell residue and growth factor content. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2010,24(1):94-99.

[13] 陈伟,姜平. 活性真皮替代物的体内外实验. 中国组织工程研究,2012,16(51):9607-9610. Chen W, Jian P. In vivo and in vitro experiment of living derm substitute. Zhongguo Zuzhi Gongcheng Yanjiu,2012,16(51):9607-9610.

[14] Burugapalli K, Pandit A. Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix. Biomacromolecules,2007,8(11):3439-3451.

[15] Andree B, Bar A, Haverich A, et al. Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng Part B Rev,2013,19(4):279-291.

[16] Badylak S F, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng,2011,13:27-53.

[17] Hodde J P, Record R D, Liang H A, et al. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium,2001,8(1):11-24.

[18] Voytik-Harbin S L, Brightman A O, Kraine M R, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem,1997,67(4):478-491.

[19] Gilbert T W, Sellaro T L, Badylak S F. Decellularization of tissues and organs. Biomaterials,2006,27(19):3675-3683.

[20] Boughner D R, Cimini M, Ronald J A, et al. Dermal fibroblasts cultured on small intestinal submucosa: Conditions for the formation of a neotissue. J Biomed Mater Res A,2005,75(4):895-906.

[21] Liu S, Zhang H, Zhang X, et al. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Engineering Part A,2011,17(5-6):725-739.

[22] Mostow E N, Haraway G D, Dalsing M, et al. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg,2005,41(5):837-843.

[23] Romanelli M, Dini V, Bertone M S. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care,2010,23(1):34-38.

[24] Romanelli M, Dini V, Bertone M, et al. OASIS wound matrix versus Hyaloskin in the treatment of difficult-to-heal wounds of mixed arterial/venous aetiology. Int Wound J,2007,4(1):3-7.

[25] Shi L, Ramsay S, Ermis R, et al. In vitro and in vivo studies on matrix metalloproteinases interacting with small intestine submucosa wound matrix. Int Wound J,2012,9(1):44-53.

[26] Zhou Y, Yan Z, Zhang H, et al. Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Tissue Eng Part A,2011,17(23-24):2981-2997.

[27] Kim S H, Song J E, Lee D, et al. Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration. J Tissue Eng Regen Med,2014,8(4):279-290.

[1] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[2] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[3] 龚卫月, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子与骨相关疾病的研究进展[J]. 中国生物工程杂志, 2016, 36(8): 99-104.
[4] 邓春平, 杨波, 梅雄, 郑赞顺, 曲伟. 重组碱性成纤维细胞生长因子游离巯基的测定分析[J]. 中国生物工程杂志, 2016, 36(6): 76-80.
[5] 张清芳, 刘如明, 肖建辉. 透明质酸在间充质干细胞向软骨细胞分化中的应用[J]. 中国生物工程杂志, 2016, 36(6): 92-99.
[6] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[7] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[8] 易善勇, 杨晶, 官丽莉, 王艳芳, 黄建, 王立勇, 李海燕, 李校堃, 姜潮. 成纤维细胞生长因子9(FGF9)的研究进展[J]. 中国生物工程杂志, 2015, 35(7): 94-101.
[9] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[10] 罗婵, 任艳萍, 龚云, 杨素芳, 阮秋燕, 管晓梅, 蒋建荣, 石德顺. 水牛胎儿成纤维细胞电转染条件的优化[J]. 中国生物工程杂志, 2013, 33(9): 59-65.
[11] 黄鹏煌, 王泽, 田海山, 赵海洋, 李海燕, 李校堃. 重组人成纤维细胞生长因子8b原核表达载体的构建和纯化研究[J]. 中国生物工程杂志, 2013, 33(1): 14-19.
[12] 宋林涛, 姜潮, 李校堃. 成纤维细胞生长因子18(FGF18)的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 95-100.
[13] 郭淑军, 万艳, 李丽玲, 秦丽, 陈小佳. FGFR2IIIc重组慢病毒载体的构建及其在肌原细胞L6中的表达[J]. 中国生物工程杂志, 2011, 31(5): 1-7.
[14] 郭淑军 万艳 李丽玲 秦丽 陈小佳. FGFR2IIIc重组慢病毒载体的构建及其在肌原细胞L6中的表达[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[15] 王一, 田海山, 李校堃. 成纤维细胞生长因子8(FGF8)研究进展[J]. 中国生物工程杂志, 2011, 31(01): 75-80.