Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (6): 92-99    DOI: 10.13523/j.cb.20160613
综述     
透明质酸在间充质干细胞向软骨细胞分化中的应用
张清芳, 刘如明, 肖建辉
遵义医学院附属医院 贵州省转化医学工程研究中心 遵义 563000
Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells
ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui
Research Center of Translational Medicine, Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi 563000, China
 全文: PDF(451 KB)   HTML
摘要:

随着组织工程学的发展,利用间充质干细胞(mesenchymal stem cells,MSCs)定向分化为软骨细胞,用于治疗骨性关节炎、关节创伤等因素造成的软骨缺损的研究方兴未艾。透明质酸(hyaluronic acid,HA) 是一种酸性多糖类生物大分子,亦是软骨基质的主要成分之一。由于其优良的生物相容性、可降解等特性,HA已成为优良的天然生物材料,其作为支架材料应用于软骨缺损修复已有一段历史。近年来又发现,HA除作为载体支架材料外,还可作为调节因子应用于MSCs向软骨细胞分化。以下将对近年来利用HA应用于MSCs向软骨细胞分化的研究进行总结,旨在为以MSCs为基础的组织工程化软骨的临床应用奠定基础。

关键词: 间充质干细胞调节因子透明质酸软骨分化载体支架    
Abstract:

With the development of tissue engineering, the use of mesenchymal stems cells (MSCs) differentiation into chondrocytes, to treat the articular cartilage injury, induced by osteoarthritis or joint trauma, has been attracting more and more attention. Hyaluronic acid (HA), a acidic polysaccharide macromolecules, is one of the main components of cartilage matrix and possess some characteristics such as biocompatibility and biodegradability, and can be used as excellent natural biological material. It has been a long history of HA which is used as scaffold material on repair cartilage defect. In recent years, some studies found that HA not only could be used as scaffold material, but also a regulator factor, applied to differentiate into cartilage. The application of MSCs differentiating into cartilage cells combined with HA in recent years were outlined. It will provide new idea for the clinical application of tissue-engineered cartilage on the basis of the MSCs.

Key words: Mesenchymal stem cells    Regulatory factor    Cartilage differentiation    Hyaluronic acid    Scaffold
收稿日期: 2015-11-04 出版日期: 2016-03-02
ZTFLH:  R968  
基金资助:

国家自然科学基金(81260278;81460156)、贵州省高层次创新型人才支持计划(黔科合人才[2015]4028号)、贵州省科技创新团队建设专项(黔科合人才团队[2013]4035号)资助项目

通讯作者: 肖建辉     E-mail: jhxiao@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张清芳
刘如明
肖建辉

引用本文:

张清芳, 刘如明, 肖建辉. 透明质酸在间充质干细胞向软骨细胞分化中的应用[J]. 中国生物工程杂志, 2016, 36(6): 92-99.

ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells. China Biotechnology, 2016, 36(6): 92-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160613        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I6/92

[1] 张美,吕国枫. 骨髓间充质干细胞向软骨的诱导分化. 中国组织工程杂志, 2010,14(45):8483-8486. Zhang M, Lv G F. Bone marrow mesenchymal stem cells to differentiate into cartilage. Journal of Chinese Tissue Engineering,2010,14(45):8483-8486.
[2] Boopalan P R, Sathishkumar S, Kumar S, et al. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation. International Orthopaedics, 2006,30(5):357-361.
[3] Saadeh P B, Brent B, Mehrara B J, et al. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Annals of Plastic Surgery,1999,42(5):509-513.
[4] Langer R, Vacanti J P. Tissue engineering. Science,1993,260(5 110):920-926.
[5] Bell E. Tissue engineering: a perspective. Cell Biochemistry,1991,45(3):239-241.
[6] 顾蔚,顾健. 脐带间充质干细胞的归巢机制. 中国组织工程研究,2013,17(6):1135-1140. Gu W, Gu J. Homing mechanism of umbilical cord mesenchymal stem cells. Chinese Journal of Tissue Engineering Research,2013,17(6):1135-1140.
[7] 李棋,唐新,裴福兴,等. 透明质酸在骨关节疾病中的应用. 中国组织工程研究与临床康复,2010,14(47):8835-8839. Li Q, Tang X, Pei F X, et al. Hyaluronic acid used in bone and joint diseases. Clinical Rehabilitative Tissue Engineering Research,2010,14 (47):8835-8839.
[8] Kristen R T, Janet M T, Jennifer A R, et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. Biological Chemistry,2004,279(17):17079-17084.
[9] 于洋,李鸿斌. 透明质酸诱导骨髓间充质干细胞治疗骨性关节炎软骨分化研究进展. 内蒙古医学杂志,2013,45(4):438-441. Yu Y, Li H B. Hyaluronic acid induced bone marrow mesenchymal stem cells to treat osteoarthritis cartilage differentiation between research progress. Journal of Inner Mongolia Medicine,2013,45(4):438-441.
[10] Dvorakova J, Velebny V, Kubala L. Hyaluronan influence on the onset of chondrogenic differentiation of mesenchymal stem cells. Neuroendocrinology Letters,2008,29(5):685-690.
[11] Ha C, Park Y, Jun C, et al. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Translational Medicine, 2015,4:1044-1051.
[12] Troy D B, Nadr M J, Aillette M S, et al. Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Research & Therapy, 2015, 6:84.
[13] 王昌耀,于丽,王英振,等. 不同浓度透明质酸对骨髓来源间充质干细胞成软骨分化的影响. 中华临床医师杂志,2011,5(21):6213-6220. Wang C Y, Yu L, Wang Y Z, et al. Influence of different concentrations of hyaluronic acid into the cartilage differentiation of bone marrow-derived mesenchymal stem cells. Chinese Journal of Clinicians,2011, 5(21):6213-6220.
[14] Cavallo C, Desando G, Columbaro M, et al. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: rationale for its use in the treatment of cartilage lesions. Journal of Biomedical Materials Research part A,2013,101(6):1559-1570.
[15] Marloes L, de Vries-van Melle M L, Tihaya M S, et al. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent. European Cells & Materials,2014,27:112-123.
[16] Choi J W, Choi B H, Park S H, et al. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artificial Organs,2013, 37(7):648-655.
[17] Rampichová M, Buzgo M, K?í?ková B, et al. Injectable hydrogel functionalised with thrombocyte-rich solution and microparticles for accelerated cartilage regeneration. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca,2013,80 (1):82-88.
[18] Coates E E, Riggin C N, Fisher J P. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. Journal of Biomedical Materials Research part A, 2013,101(7):1962-1970.
[19] Liming B, Zhai D Y, Zhang E C, et al. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Tissue Engineering Part A, 2012,18(7-8):715-724.
[20] Liming B, Chieh H, Elena T, et al. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials,2013,34(2): 413-421.
[21] Bian L, Guvendiren M, Mauck R L, et al. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proceedings of the National Academy of Sciences of the Nnited States of America,2013,110(25):10117-10122.
[22] Timothy N S, Krishna M, Miranda I, et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. Journal of Biological Engineering,2014,8:10.
[23] Jana D, Lukáš K, Karol Š, et al. Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. Journal of Biomedical Materials Research Part A,2014,102A:3523-3530.
[24] Bian L, Zhai D Y, Tous E, et al. Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogel in vitro and in vivo. Biomaterials,2011,32(27): 6425-6434.
[25] Jung H, Park J S, Yeom J, et al. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules,2014,15(3):707-714.
[26] Schwartz Z, Griffon D J, Fredericks L P,et al. Hyaluronic acid and chondrogenesis of murine bone marrow mesenchymal stem cells in chitosan sponges. American Journal of Veterinary Research,2011,72(1):42-50.
[27] Meng F, He A, Zhang Z, et al. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. Journal of Biomedical Materials Research Part A, 2014, 102A: 2725-2735.
[28] Paresh A P, Lesley W C, Jean-Philippe St-Pierre, et al. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54: 213-225.
[29] 孟繁钢,何爱珊,张志奇,等. 透明质酸促进人间充质干细胞复合磷酸三钙-胶原材料体外成软骨研究.中华实用外科杂志, 2014,31(11): 2515-2518. Meng F G, He A S, Zhang Z Q, et al. Hyaluronic acid to promote human mesenchymal stem cells tricalcium phosphate -collagen composite materials research into cartilage in vitro. Chinese Journal of Practical Surgery, 2014, 31(11): 2515-2518.
[30] Amos M, John P G, Fergal J O. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Engineering Part A, 2015, 21, (3-4):486-497.
[31] Eva Filová, Michala Rampichová, Andrej Litvinec et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. International Journal of Pharmaceutics,2013, 447:139-149.
[32] Sun L, Li H, Qu L, et al. Immobilized lentivirus vector on chondroitin sulfate-hyaluronate acid-silk fibroin hybrid scaffold for tissue-engineered ligament-bone junction. Biomed Research International,2014,1-10.
[33] Yeh H Y, Lin T Y, Lin C H, et al. Neocartilage formation from mesenchymal stem cells grown in typeII collagen-hyaluronan composite scaffolds. Differentiation, 2013,86:171-183.
[34] Amos M, Tanya J L, John P G, et al. Incorporation of TGF-Beta 3 within collagen-hyaluronic acid scaffolds improves their chondrogenic potential. Advanced Healthcare Materials, 2015, 4:1175-1179.
[35] Nopporn S, Teerasak D, Wilairat L, et al. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Materials Science and Engineering C, 2015,52:90-96.
[36] Guo P, Shi Z L, Liu A, et al. Cartilage oligomeric matrix protein gene multilayers inhibit osteogenic differentiation and promote chondrogenic differentiation of mesenchymal stem cells. International Journal of Molecular Sciences,2014,15:20117-20133.
[37] 邓天政,吕晶,杨捷绯,等. 组织工程骨-软骨复合组织体内异位移植的研究. 中国美容医学,2013,22(1):51-54. Deng T Z, Lv J, Yang J F, et al. Tissue engineering bone and cartilage composite organization research of heterotopic transplantation in vivo. Chinese Journal of Aesthetic Medicine,2013,22(1):51-54.
[38] Patrascu J M, Krüger J P, Böss H G, et al. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model. Journal of Biomedical Materials Research part B-Applied Biomaterials,2013,101(7):1310-1320.
[39] 伏治国,瞿玉兴. 关节镜下微骨折技术联合关节内注射玻璃酸钠修复膝关节软骨缺损. 东南大学学报(医学版), 2012, 31(2): 196-198. Fu Z G,Qu Y X. Microfracture technique in combination with intraarticular hyaluronic acid sodium injection for the treatment of knee chondral defect under arthroscopy. Journal Southeast University (Medical Science Edition) 2012, 31(2): 196-198.
[40] 章有才,付昌马,钱春生,等. 微骨折术联合玻璃酸钠注射治疗膝骨关节炎软骨缺损. 实用骨科杂志, 2014, 20 (1): 22-25. Zhang Y C,Fu C M,Qian C S,et al. Arthroscopic microfracture technique combined with sodium hyaluronate injection in the treatment of cartilage defects in knee osteoarthritis. Journal of Practical Orthopaedics, 2014, 20 (1): 22-25.
[41] Mats Brittberg. Knee cartilage repair with hyalograft® (Hyaff-11 scaffold with seeded autologous chondrocytes). Techniques in Cartilage Repair Surgery, Berlin:SpringerVerlag,2014.227-235.
[42] Wakitani S, Yamamoto T. Response of the donor and recipient cells in mesenehymal cell transplantation to cartilage defect. Microscopy Research and Technique, 2002, 58(1): 14-18.
[43] Wakitani S, Mitsuoka T, Nakamura N, et al. Autologous bone marrow stromal cell transplantation for repair of full thickness articular cartilage defects in human patellae: two case reports. Cell Transplant, 2004, 13(5): 595-600.
[44] Wakitanis S, Nawata M, Tensho K, et al. Repair of articular cartilage defects in the patello femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1(1): 74-79.
[45] Wakitani S, Okabe T, Horibe S, et al. Safety of autologous bone marrow derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(2): 146-150.
[46] Centeno C J, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 2008, 11(3): 343-353.
[47] Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage, 2007, 2: 226-231.
[48] Steven S, Angie B B, Danielle A. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. The Physician and Sportsmedicine, 2013,41(3):7-18.
[49] Bobick B E, Chen F H, Le A M, et al. Regulation of the chondrogenic phenotype in culture. Birth Defects Research Part C -Embryo Today: Reviews,2009,87(4):351-371.
[50] Cindy C, Jason A Burdick. Engineering cartilage tissue. Advanced Drug Delivery Reviews,2008,(60): 243-262.
[51] 寇建强,王昌耀,王英振. 外源性透明质酸对兔骨髓间充质干细胞定向分化为软骨细胞的影响. 中国组织工程研究与临床康复,2011,15(3):381-385. Kou J Q, Wang C Y, Wang Y Z. Exogenous hyaluronic acid on rabbit bone marrow mesenchymal stem cells to differentiate into chondrocytes influence. Journal of Clinical Rehabilitative Tissue Engineering Research,2011,15(3):381-385.
[52] Hegewald A A, Ringe J, Bartel J, et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells:a preliminary study. Tissue Cell,2004,36:431-438.
[53] Lee K B, Hui J H, Song I C, et al. Injectable mesenchymal stem cell theapy for large cartilage defects——a porcine model. Stem Cells,2007,25:2964-2971.
[54] Turajane T, Chaweewannakorn U, Larbpaiboonpong V, et al. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. Journal of the Medical Association of Thailand,2013,96(5):580-588.
[55] Sharon A, Jessica S H, Valerie B, et al. A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells. Journal of Controlled Release 2014, 179:42-51.
[56] Qu F, Wang J L, Xu N R, et al. Wnt3a modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCs. Frontiers in Bioscience-Landmark,2013,(18):493-503.
[57] Kondo M, Yamaoka K, Sakata K, et al. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheumatol,2015,67(5):1250-1260.

[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[4] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[5] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[6] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[7] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[8] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[9] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.
[10] 郑妍,姚欢,杨珂. SFRP5抑制BMP9诱导人脐带间充质干细胞成骨分化的实验研究 *[J]. 中国生物工程杂志, 2018, 38(7): 7-13.
[11] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[12] 郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.
[13] 袁雅红, 赵珊珊, 王小莉, 腾智平, 李东升, 曾毅. HIV-1 Tat蛋白抑制骨髓间充质干细胞的造血支持功能[J]. 中国生物工程杂志, 2017, 37(6): 1-8.
[14] 郜娇娇, 杨树林. 微生物发酵法生产高分子量透明质酸的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 118-125.
[15] 曹俊杰, 李爱芳, 卫亚琳, 廉静, 唐敏. Notch信号参与BMP4诱导的间充质干细胞成骨分化及其机制的初步探讨[J]. 中国生物工程杂志, 2017, 37(4): 48-55.