Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (7): 71-81    
技术与方法     
响应面法对小球藻Chlorella zofingiensis高产虾青素条件的优化
王丹, 郑洪立, 纪晓俊, 高振
南京工业大学制药与生物工程学院 南京 210009
Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology
WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen
College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
 全文: PDF(2518 KB)   HTML
摘要: 采用析因设计法(Plackett-burman)对影响Chlorella zofingiensis高产虾青素的相关因素进行评价,发现硝酸钠、光照强度、二价铁离子及醋酸钠浓度对虾青素产量影响显著。利用中心组合设计(central composite design)及响应面分析对影响虾青素产量的关键因素做进一步的优化,得到较佳的试验点为二价铁离子浓度0.41 mmol/L, 硝酸钠浓度0.8 mmol/L, 醋酸钠浓度37.1 mmol/L,光照强度650 E/m2×s。 优化后虾青素产量从7.890mg/L提高到19.81mg/L, 比优化前提高了2.5倍。
关键词: Chlorella zofingiensis虾青素优化响应面法    
Abstract: Statistical experimental designs were used to optimize the accumulation of astaxanthin by Chlorella zofingiensis. First, four most important factors (Fe2+, NaNO3, sodium acetate(NaAc)and light intensity) influencing astaxanthin yield were identified by a two-level Plackett-Burman (PB) design from 9 independent variables. Central Composite Design (CCD) and response surface analysis were adopted to investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum astaxanthin yield. Statistical analysis results showed that interactions between Fe2+ and light intensity, NaNO3 and light intensity affected the astaxanthin yield significantly. The predicted maximum astaxanthin yield (18.88 mg/L) was verified by validation experiments under the optimum conditions of 0.41 mmol/L FeSO4, 0.8 mmol/L NaNO3, 37.1 mmol/L NaAc and 650 E/m2×s illumination. Optimal conditions obtained in this experiment resulted in a 2.5-fold increased level of the astaxanthin production prior to initial yield and laid a solid foundation for further use of Chlorella zofingiensis in the production of astaxanthin.
Key words: Chlorella zofingiensis    Astaxanthin    Optimization    Response surface methodology
收稿日期: 2013-02-19 出版日期: 2013-07-25
ZTFLH:  Q815  
基金资助: 国家"973"计划项目(2011CB200900);国家自然科学基金(20936002)资助项目
通讯作者: 高振     E-mail: gaozhen@njut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王丹
郑洪立
纪晓俊
高振

引用本文:

王丹, 郑洪立, 纪晓俊, 高振. 响应面法对小球藻Chlorella zofingiensis高产虾青素条件的优化[J]. 中国生物工程杂志, 2013, 33(7): 71-81.

WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology. China Biotechnology, 2013, 33(7): 71-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I7/71

[1] Goswami G, Chaudhuri S, Dutta D. The present perspective of astaxanthin with reference to biosynthesis and pharmacological importance. World Journal of Microbiology and Biotechnology, 2010, 26(11):1925-1939.
[2] Higuera C I, Felix V L, Goycoolea F M. Astaxanthin: A review of its chemistry and applications. Crit Rev Food Sci Nutr, 2006, 46(2):185-196.
[3] Nicole M L, Brien N M. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. Journal of Dermatological Science, 2002, 30:73-84.
[4] Nishino H, Tokuda H, Satomi Y, et al. Cancer prevention by carotenoids. Pure and Applied Chemistry, 1999, 71(12):2273-2278.
[5] Li J, Zhu D, Niu J, et al. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 2011, 29(6):568-574.
[6] Guerin M, Huntley M E, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 2003, 21(5):210-216.
[7] Andrewes A G, Starr M P. (3R,3'R)-Astaxanthin from yeast Phaffia rhodozyma. Phytochemistry, 1976, 15(6):1009-1011.
[8] Johnson E A, Lewis M J. Astaxanthin formation by the yeast Phaffia rhodozyma. Journal of General Microbiology, 1979, 115(NOV):173-183.
[9] Johnson E A, Villa T G, Lewis M J, et al. Simple method for isolation of astaxanthin from basidiomycetous yeast Phaffia rhodozyma. Applied and Environmental Microbiology, 1978, 35(6):1155-1159.
[10] Schmidt I, Schewe H, Gassel S, et al. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol, 2011, 89(3):555-571.
[11] Bubrick P. Production of axtaxanthin from Haematococcus. Bioresource Technology, 1991, 38(2-3):237-239.
[12] Del Campo J A, Moreno J, Vargas M, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol, 2004, 64(6):848-854.
[13] Ip P-F, Chen F. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 2005, 40(2):733-738.
[14] Ip P F, Wong K H, Chen F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochemistry, 2004, 39(11):1761-1766.
[15] Zhou J, Yu X, Ding C, et al. Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. Journal of Environmental Sciences, 2011, 23(1):22-30.
[16] Kang C D, Sim S J. Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system. Biotechnology Progress, 2007, 23(4):866-871.
[17] Kobayashi M, Kakizono T, Nagai S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological-changes in acetate media. Journal of Fermentation and Bioengineering, 1991, 71(5):335-339.
[18] Lorenz R T, Cysewski G R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000, 18(4):160-167.
[19] Bocchini D A, Alves-Prado H F, Baida L C, et al. Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochemistry, 2002, 38(5):727-731.
[20] Somnath D. Shinde S S L. Statistic media optimization for lutein production from microalgae Auxenochlorella protothecoides SAG 211-7A. International Journal of Advanced Biotechnology and Research, 2010, 1(2):104-114.
[21] Novo M, Mosquera M, Prieto F R. Prototropic Equilibria of 2-Pyridylbenzimidazoles in Aqueous-Solution. Can J Chem, 1992, 70(3):823-827.
[22] Majchrzak D, Frank U, Elmadfa I. Carotenoid profile and retinol content of baby food products. Eur Food Res Technol, 2000, 210(6):407-413.
[23] Kalil S J, Maugeri F, Rodrigues M I. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochemistry, 2000, 35(6):539-550.
[24] Shaish A, Avron M, Pick U, et al. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta, 1993, 190(3):363-368.
[25] da Fonseca R A D, Rafael R D, Kalil S J, et al. Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma. Afr J Biotechnol, 2011, 10(7):1165-1171.
[26] Kobayashi M, Kakizono T, Nishio N, et al. Effects of light intensity, light quality and illumination cycle on astaxanthin formation in the green alg, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 1992, 74(1):61-63.
[27] Ishiki M, Ishibashi H, Usui I, et al.The effect of Astaxanthin, a strong antioxidant, on reactive oxygen species or insulin signaling in vitro. Diabetologia, 2010, 53:S80-S80.
[28] Borowitzka M A, Huisman J M, Osborn A. Culture of the astaxanthin-producing green-alga Haematococcus pluvialis1: Effect of nutrients on growth and cell type. Journal of Applied Phycology, 1991, 3(4):295-304.
[29] Hata N, Ogbonna J C, Hasegawa Y, et al. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl Phycol, 2001, 13(5):395-402.
[30] Katsuda T, Lababpour A, Shimahara K, et al. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme and Microbial Technology, 2004, 35(1):81-86.
[31] Tripathi U, Sarada R, Ravishankar G A. Effect of culture conditions on growth of green alga-Haematococcus pluvialis and astaxanthin production. Acta Physiol Plant, 2002, 24(3):323-329.
[32] Kobayashi M, Katsuragi T, Tani Y. Enlarged and astaxanthin-accumulating cyst cells of the green alga Haematococcus pluvialis. J Biosci Bioeng, 2001, 92(6):565-568.
[33] Cruz J M, Parajo J C. Improved astaxanthin production by Xanthophyllomyces dendrorhous growing on enzymatic wood hydrolysates containing glucose and cellobiose. Food Chem, 1998, 63(4):479-484.
[34] Cannizzaro C M, Marison I W, von Stockar U. Astaxanthin production by Phaffia rhodozyma. Abstracts of Papers of the American Chemical Society, 2000, 219:U222-U222.
[1] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[2] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[3] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[4] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[5] 高福兰,齐家龙,舒聪妍,谢航航,黄惟巍,刘存宝,杨旭,孙文佳,白红妹,马雁冰. 序列优化的小鼠IL-33基因在哺乳动物细胞中的有效分泌表达[J]. 中国生物工程杂志, 2019, 39(3): 46-55.
[6] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[7] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[8] 纪海姣,李文蕾,黄瑞晶,李剑,徐寒梅. 抗CD20抗体高产细胞株的筛选及质量评估[J]. 中国生物工程杂志, 2018, 38(8): 34-40.
[9] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[10] 张莉,丁涓,郝宇晨,叶城,蒲洋. 一株海洋微藻的鉴定及其原生质体制备条件优化 *[J]. 中国生物工程杂志, 2018, 38(11): 42-50.
[11] 杨静,贾如涵,李文慧,石大林,邵明洋,韩跃武. 抗菌肽改良设计及抗炎作用的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 57-61.
[12] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[13] 冯雪, 高香, 牛纯青, 刘堰. 密码子优化后的αB-晶状体蛋白基因毕赤酵母重组质粒的构建及表达的初步研究[J]. 中国生物工程杂志, 2017, 37(7): 42-47.
[14] 张旭辉, 张红楠, 李勇, 汪文强. 抑制西瓜蔓枯病菌的生防真菌筛选、鉴定及发酵条件优化[J]. 中国生物工程杂志, 2017, 37(5): 76-86.
[15] 姚韧辉, 董卓, 李会. Gibberella intermedia C2转化4-雄甾烯-3、17-二酮的研究[J]. 中国生物工程杂志, 2017, 37(3): 73-77.