Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (12): 104-108    
综述     
单链抗体抑制乙肝病毒的研究
刘伟侠, 陈智
浙江大学医学院附属第一医院传染病诊治国家重点实验室 杭州 310003
Study on the Inhibition of Hepatitis B Virus by Single-chain Fv Fragment
LIU Wei-xia, CHEN Zhi
State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
 全文: PDF(421 KB)   HTML
摘要:

单链抗体已用于抗乙肝病毒(hepatitis B virus, HBV)的研究,目前已研制出作用于各种靶点,如HBV表面抗原pre-S1、核心蛋白(hepatitis B virus core antigen, HBc)、DNA聚合酶及X 蛋白的多种单链抗体。单链抗体对偶联的分子具有靶向定位作用,因此,对抗原的亲和性大小、对靶细胞内化(Internalization)的强弱及其自身结构的稳定性是影响单链抗体应用的主要因素。

关键词: 单链抗体乙肝病毒靶向抑制    
Abstract:

Single-chain Fv Fragment (ScFv) has been introduced into the study of inhibiting Hepatitis B virus (HBV) replication. Nowadays, ScFvs bound to HBV pre-S1, core antigen, DNA polymerase and X protein have been developed, respectively. ScFv can make the coupled molecule with therapeutic effects localized at the target site. Thus, affinity with the antigen, internalization property and structural stability of ScFv are the main factors limiting the utilization of ScFv.

Key words: Single-chain Fv Fragments    HBV    Targeted inhibition
收稿日期: 2011-08-15 出版日期: 2011-12-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(30771918)

通讯作者: 陈智,电子信箱:zju.chenzhi@gmail.com     E-mail: zju.chenzhi@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘伟侠, 陈智. 单链抗体抑制乙肝病毒的研究[J]. 中国生物工程杂志, 2011, 31(12): 104-108.

LIU Wei-xia, CHEN Zhi. Study on the Inhibition of Hepatitis B Virus by Single-chain Fv Fragment. China Biotechnology, 2011, 31(12): 104-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I12/104


[1] Arndt K M, Muller K M, Pluckthun A. Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry 1998, 37(37):12918-12926.

[2] Bird R E, Hardman K D, Jacobson J W, et al. Single-chain antigen-binding proteins. Science, 1988, 242(4877):423-426.

[3] Le Seyec J, Chouteau P, Cannie I, et al. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol, 1999, 73(3):2052-2057.

[4] Park S G, Jeong Y J, Lee Y Y, et al. Hepatitis B virus-neutralizing anti-pre-S1 human antibody fragments from large naive antibody phage library. Antiviral Res, 2005, 68(3):109-115.

[5] Scaglioni P P, Melegari M, Wands J R. Characterization of hepatitis B virus core mutants that inhibit viral replication. Virology, 1994, 205(1):112-120.

[6] Yamamoto M, Hayashi N, Takehara T, et al. Intracellular single-chain antibody against hepatitis B virus core protein inhibits the replication of hepatitis B virus in cultured cells. Hepatology, 1999, 30(1):300-307.

[7] 汤正好, 余永胜, 马会慧, 等. 非复制型腺病毒介导抗-HBC单链抗体的细胞内表达. 中华肝脏病杂志, 2006, 14(8):587-589. Tang Z H, Yu Y S, Ma H H, et al. Chin J Hepatol, 2006, 14(8):587-589.

[8] Zu Putlitz J, Lanford R E, Carlson R I, et al. Properties of monoclonal antibodies directed against hepatitis B virus polymerase protein. J Virol, 1999, 73(5):4188-4196.

[9] Lee M S, Kwon M H, Kim K H, et al. Selection of scFvs specific for HBV DNA polymerase using ribosome display. J Immunol Methods, 2004, 284(1-2):147-157.

[10] Diamantis I D, McGandy C E, Chen T J, et al. Hepatitis B X-gene expression in hepatocellular carcinoma. J Hepatol, 1992, 15(3): 400-403.

[11] Koike K, Moriya K, Iino S, et al. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology, 1994, 19(4): 810-819.

[12] Jin Y H, Kwon M H, Kim K, et al. An intracellular antibody can suppress tumorigenicity in hepatitis B virus X-expressing cells. Cancer Immunol Immunother, 2006, 55(5): 569-578.

[13] Blatt L M, Davis J M, Klein S B, et al. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res, 1996, 16(7): 489-499.

[14] 刘顺爱, 浅野龙太郎, 王学, 等. 人源抗HBsAg ScFv与重组复合干扰素融合蛋白的高效表达及活性鉴定. 中国免疫学杂志, 2004, 20(9):629-632, 638. Liu S A, Ryutaro Asano, Wang X, et al. Chin J Immunol, 2004, 20(9):629-632, 638.

[15] Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology, 2003, 37(4):764-670.

[16] McCaffrey A P, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol, 2003, 21(6):639-644.

[17] Song E, Zhu P, Lee S K, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 2005, 23(6):709-717.

[18] Wen W H, Liu J Y, Qin W J, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology, 2007, 46(1): 84-94.

[19] Lindgren M, Hallbrink M, Prochiantz A, et al. Cell-penetrating peptides. Trends Pharmacol Sci, 2000, 21(3):99-103.

[20] Ryu J, Han K, Park J, et al. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells, 2003, 16(3):385-391.

[21] Vives E, Richard J P, Rispal C, et al. TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci, 2003, 4(2):125-132.

[22] 孟艳玲, 温伟红, 薛茜, 等. 人抗HBsAg单链抗体/鱼精蛋白截短体融合蛋白基因的构建、表达及活性鉴定. 第四军医大学学报,2006, 26(20):1828-1831. Meng Y L, Wen W H, Xue Q, et al. Journal of the Fourth Miliary Medical University, 2006, 26(20):1828-1831.

[23] He D, Yang H, Lin Q, et al. Arg9-peptide facilitates the internalization of an anti-CEA immunotoxin and potentiates its specific cytotoxicity to target cells. Int J Biochem Cell Biol, 2005, 37(1):192-205.

[24] 薛茜, 温伟红, 孟艳玲, 等. 含Arg9的人抗HBsAg单链抗体/EGFP融合蛋白基因的构建、表达和内化作用的研究. 中国生物工程杂志, 2006, 26(7):1-6. Xue Q, Wen W H, Meng Y L, et al. China Biotechnology, 2006, 26(7):1-6.

[25] Xu J L, Davis M M. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity, 2000, 13(1):37-45.

[26] Park S G, Jung Y J, Lee Y Y, et al. Improvement of neutralizing activity of human scFv antibodies against hepatitis B virus binding using CDR3 V(H) mutant library. Viral Immunol, 2006, 19(1):115-123.

[27] Forrer P, Jung S, Pluckthun A. Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr Opin Struct Biol, 1999, 9(4):514-520.

[28] Edwards B M, Barash S C, Main S H, et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol, 2003, 334(1):103-118.

[29] Baker K P, Edwards B M, Main S H, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum, 2003, 48(11):3253-3265.

[30] Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A, 1997, 94(10): 4937-4942.

[31] Hanes J, Jermutus L, Weber-Bornhauser S, et al. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A, 1998, 95(24):14130-14135.

[32] He M, Taussig M J. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res, 1997, 25(24):5132-5134.

[33] Groves M, Lane S, Douthwaite J, et al. Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods, 2006, 313(1-2):129-139.

[34] Lillo A M, Sun C, Gao C, et al. A human single-chain antibody specific for integrin alpha3beta1 capable of cell internalization and delivery of antitumor agents. Chem Biol, 2004, 11(7):897-906.

[35] Durrbach A, Angevin E, Poncet P, et al. Antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal cell carcinoma in vitro. Cancer Gene Ther, 1999, 6(6):564-571.

[36] Deng S X, Hanson E, Sanz I. In vivo cell penetration and intracellular transport of anti-Sm and anti-La autoantibodies. Int Immunol, 2000, 12(4):415-423.

[37] Wen W H, Qin W J, Gao H, et al. An hepatitis B virus surface antigen specific single chain of variable fragment derived from a natural immune antigen binding fragment phage display library is specifically internalized by HepG2.2.15 cells. J Viral Hepat, 2007, 14(7):512-519.

[38] Huston J S, McCartney J, Tai M S, et al. Medical applications of single-chain antibodies. Int Rev Immunol, 1993, 10(2-3):195-217.

[39] Harris B. Exploiting antibody-based technologies to manage environmental pollution. Trends Biotechnol, 1999, 17(7):290-296.

[40] Proba K, Honegger A, Pluckthun A. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J Mol Biol, 1997, 265, (2), 161-172.

[41] Glockshuber R, Schmidt T, Pluckthun A. The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry, 1992, 31(5):1270-1279.

[42] Cattaneo A, Biocca S. The selection of intracellular antibodies. Trends Biotechnol, 1999, 17(3):115-121.

[43] Visintin M, Tse E, Axelson H, et al. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A, 1999, 96(21):11723-11728.

[44] Worn A, Pluckthun A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol, 2001, 305(5):989-1010.

[45] Proba K, Honegger A, Pluckthun A. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J Mol Biol, 1997, 265, (2), 161-172.

[46] Jung S, Honegger A, Pluckthun A. Selection for improved protein stability by phage display. J Mol Biol, 1999, 294(1):163-180.

[47] Jermutus L, Honegger A, Schwesinger F, et al. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A, 2001, 98(1):75-80.

[48] Martineau P, Jones P, Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol, 1998, 280(1):117-127.

[49] Visintin M, Tse E, Axelson H, et al. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A, 1999, 96(21):11723-11728.

[1] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[2] 刘丽艳,刘琪琦,张影,王升启. 双链探针实时荧光PCR核酸检测新技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 28-34.
[3] 徐燕,刘正芸,张琬棂,王盛羽,王欢. 靶向干扰TAGLN表达对HBV阳性肝癌细胞生物学行为的影响及机制初探 *[J]. 中国生物工程杂志, 2019, 39(11): 13-21.
[4] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[5] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[6] 赵荣,陈含宇,黄春,章晓联,潘勤. 靶向B细胞并特异结合其分泌IL-10的重组融合蛋白的构建、表达和初步鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 1-6.
[7] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[8] 王冬冬, 张国利, 岳玉环, 吴广谋, 田园, 刘雨玲, 吉元刚, 王金鹏, 李建, 潘荣荣, 马洪圆. 抗A型产气荚膜梭菌α毒素全人源双价单链抗体的构建、表达及其活性的初步研究[J]. 中国生物工程杂志, 2017, 37(4): 18-25.
[9] 温杰, 宋琳琳, 张莹, 王荷, 何金生, 洪涛. 稳定表达Aβ特异性单链抗体的哺乳动物细胞株构建和功能研究[J]. 中国生物工程杂志, 2017, 37(2): 1-7.
[10] 陈华新, 武静, 赵瑾, 姜鹏. 抗人AFP单链抗体与藻胆蛋白融合蛋白的构建、表达与活性分析[J]. 中国生物工程杂志, 2016, 36(5): 74-80.
[11] 代云见, 张勇侠, 何勇智, 丛聪, 张涛, 王明蓉. 技术与方法Anti-IgE单链抗体纯化工艺研究及活性鉴定[J]. 中国生物工程杂志, 2015, 35(12): 51-57.
[12] 苏蓝, 张萍, 汪杨俊琦, 钟儒刚. siRNA抑制乙肝病毒的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 102-107.
[13] 王报贵, 武晓丽, 董素琴, 甘敏, 陈星星, 陈飞, 明星, 徐锋. 抗肠炎沙门氏菌单链抗体制备及其特异性分析[J]. 中国生物工程杂志, 2013, 33(5): 62-67.
[14] 陈继军, 毛晓燕, 乔玉玲, 毕司英. 抗狂犬病病毒单链抗体的筛选及鉴定[J]. 中国生物工程杂志, 2013, 33(11): 27-31.
[15] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.