Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 1-7    DOI: 10.13523/j.cb.20170201
研究报告     
稳定表达Aβ特异性单链抗体的哺乳动物细胞株构建和功能研究
温杰1, 宋琳琳1, 张莹1, 王荷1, 何金生1, 洪涛1,2
1. 北京交通大学理学院生命科学与生物工程研究院 北京 100044;
2. 中国疾病预防控制中心病毒病预防控制所 北京 100052
Construction and Function of Stable Mammalian Cell Lines Expressing the Aβ-specific Single Chain Fragment Variants
WEN Jie1, SONG Lin-lin1, ZHANG Ying1, WANG He1, HE Jin-sheng1, HONG Tao1,2
1. College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China;
2. Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
 全文: PDF(1002 KB)   HTML
摘要:

构建可以稳定表达Aβ特异性单链抗体(scFv)的哺乳动物细胞株。应用重叠延伸PCR的方法,以前期建立的Aβ特异性单克隆抗体(A8)的轻、重链可变区基因为模板,构建scFv的基因片段,通过(G4S)3或p2A两种不同的连接肽(Linker)序列,拼接得到多种形式的scFv基因片段,用于构建真核表达载体。利用脂质体分别转染人宫颈癌细胞(Hela)和中国仓鼠卵巢细胞(CHO),Western blot鉴定scFv的表达情况;以潮霉素筛选获得稳定表达抗Aβ的scFv细胞株,以间接ELISA和斑点印迹分析所得scFv的抗原识别能力;采用体外细胞实验,在超微病理水平分析所得scFv的细胞保护作用。结果:成功构建了Aβ特异性scFv的3个真核表达载体pSecTag2/HygroA-VL-(G4S)3-VH、pSecTag2/HygroA-VH-(G4S)3-VL和pSecTag2/HygroA-VL-p2A-VH,获得了2株稳定表达Aβ特异性scFv的细胞株Hela-VL-p2A-VH和CHO-VL-(G4S)3-VH。Western blot结果表明了相应scFv的正确表达,间接ELISA和斑点印迹结果表明所分泌的细胞上清具有Aβ抗原识别能力,体外实验显示其具有阻断和抑制Aβ寡聚体细胞毒性的作用。稳定表达Aβ特异性单链抗体的细胞株有助于AD免疫治疗基础研究的进一步开展。

关键词: 单链抗体阿尔茨海默病β淀粉样肽(A β)    
Abstract:

The aim is to construct the stable mammalian cell lines which express the Aβ-specific single-chain fragment variants (scFv). In order to construct the scFv gene, the variable regions of light and heavy chain from Aβ-specific monoclonal antibody (A8) were used as the template, and splicing overlap extension polymerase chain reaction (SOE-PCR) was used to get the scFv DNA fragments. Short sequence (G4S)3 or p2A was selected as the linker for scFv construction. The eukaryotic expression vectors for anti-Aβ scFv was constructed. Hela and CHO cells were transfected via Lipofectamine 2000, and the scFv products were detected through Western blot. The stable cell lines were screened with hygromycin B, and the antigen-binding ability of scFv in supernatants was detected by indirect ELISA and dot blot. The cellular protection ability of scFv was identified by cell transmission electron microscopy (TEM). Three eukaryotic expression vectors, pSecTag2/HygroA-VL-(G4S)3-VH, pSecTag2/HygroA-VH-(G4S)3-VL and pSecTag2/HygroA-VL-p2A-VH were constructed; and two cell lines expressing the Aβ-specific scFv, Hela-VL-p2A-VH and CHO-VL-(G4S)3-VH were established. The results of indirect ELISA and dot blot showed that the supernatants could recognize Aβ specifically, and the results of cell assays in vitro showed that the supernatants could block the cytotoxicicity induced by Aβ oligomers. The stable cell lines expressing anti-Aβ scFv could be used for further AD immunotherapeutic study.

Key words: Alzheimer's disease (AD)    Amyloid β-peptide (Aβ)    Single chain fragment variant (scFv)
收稿日期: 2016-09-05 出版日期: 2017-02-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(81100809,81271417)、北京市自然科学基金(7152090)、中央高校基本科研业务费(2015JBM096)资助项目

通讯作者: 张莹     E-mail: yingzhang@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

温杰, 宋琳琳, 张莹, 王荷, 何金生, 洪涛. 稳定表达Aβ特异性单链抗体的哺乳动物细胞株构建和功能研究[J]. 中国生物工程杂志, 2017, 37(2): 1-7.

WEN Jie, SONG Lin-lin, ZHANG Ying, WANG He, HE Jin-sheng, HONG Tao. Construction and Function of Stable Mammalian Cell Lines Expressing the Aβ-specific Single Chain Fragment Variants. China Biotechnology, 2017, 37(2): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170201        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/1

[1] Tam J H, Pasternak S H. Amyloid and Alzheimer's disease:inside and out. Can J Neurol Sci, 2012, 39(3):286-298.
[2] Bayer A J, Bullock R, Jones R W, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology, 2005, 64(1):94-101.
[3] Fernandez-Funez P, Zhang Y, Sanchez-Garcia J, et al. Anti-Abeta single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease. Hum Mol Genet, 2015, 24(21):6093-6105.
[4] Droste P, Frenzel A, Steinwand M, et al. Structural differences of amyloid-beta fibrils revealed by antibodies from phage display. BMC Biotechnol, 2015, 15:57.
[5] Kamynina A V, Holmström K M, Koroev D O, et al. Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity. Int J Biochem Cell Biol, 2013, 45(4):899-907.
[6] Zhao M, Wang S W, Wang Y J, et al. Pan-amyloid oligomer specific scFv antibody attenuates memory deficits and brain amyloid burden in mice with Alzheimer's disease. Curr Alzheimer Res, 2014, 11(1):69-78.
[7] Zhang Y, Yang H Q, Fang F, et al. Single chain variable fragment against abeta expressed in baculovirus inhibits abeta fibril elongation and promotes its disaggregation. PLoS One, 2015, 10(4):e0124736.
[8] Meli G, Visintin M, Cannistraci I, et al. Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer's amyloid-beta oligomers. J Mol Biol, 2009, 387(3):584-606.
[9] Marin-Argany M, Rivera-Hernández G, Martí J, et al. An anti-Abeta (amyloid beta) single-chain variable fragment prevents amyloid fibril formation and cytotoxicity by withdrawing Abeta oligomers from the amyloid pathway. Biochem J, 2011, 437(1):25-34.
[10] Kim J H, Lee S R, Li L H, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One, 2011, 6(4):e18556.
[11] Zhang H, Darvell B W. Morphology and structural characteristics of hydroxyapatite whiskers:effect of the initial Ca concentration, Ca/P ratio and pH. Acta Biomater, 2011, 7(7):2960-2968.
[12] Medecigo M, Manoutcharian K, Vasilevko V, et al. Novel amyloid-beta specific scFv and VH antibody fragments from human and mouse phage display antibody libraries. J Neuroimmunol, 2010, 223(1-2):104-114.
[13] Zameer A, Kasturirangan S, Emadi S, et al. Anti-oligomeric Abeta single-chain variable domain antibody blocks Abeta-induced toxicity against human neuroblastoma cells. J Mol Biol, 2008, 384(4):917-928.

[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.